-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_batch_task1.py
210 lines (179 loc) · 7.53 KB
/
inference_batch_task1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python3 -u
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
import logging
import os
import sys
import numpy as np
import torch
import sklearn
from fairseq import distributed_utils, options, tasks, utils
from ptflops import get_model_complexity_info
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.utils import reset_logging
from omegaconf import DictConfig
from utils import checkpoint_utils
from utils.eval_utils import eval_step
from PIL import Image
from io import BytesIO
from tqdm import tqdm
import base64
import json
import re
from time import time
from utils.cheapfakes import data_preprocess
CONTEXT = {
'yes': 0,
'no': 1,
}
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("ofa.evaluate")
IMG_PREFIX = os.environ.get("INPUT_FOLDER", None)
assert IMG_PREFIX is not None, "Please set INPUT_FOLDER environment variable"
def main(cfg: DictConfig, **kwargs):
utils.import_user_module(cfg.common)
reset_logging()
logger.info(cfg)
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_fp16 = cfg.common.fp16
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
if use_cuda:
torch.cuda.set_device(cfg.distributed_training.device_id)
# Load ensemble
overrides = eval(cfg.common_eval.model_overrides)
# Deal with beam-search / all-candidate VQA eval
data_fl = open(cfg.task.data, 'r')
temp_datafile = 'temp.tsv'
fl = open(temp_datafile, 'w')
fl.write("id\timg\tsentence1\tsentence2\tlabel\n")
fl.close()
cfg.task.data = temp_datafile
overrides['data'] = temp_datafile
if cfg.task._name == "vqa_gen":
overrides['val_inference_type'] = "beamsearch" if kwargs['beam_search_vqa_eval'] else "allcand"
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
if kwargs["zero_shot"]:
task = tasks.setup_task(cfg.task)
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
else:
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
# loading the dataset should happen after the checkpoint has been loaded
# so we can give it the saved task config
saved_cfg.task.data = temp_datafile
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
if cfg.generation.lm_path is not None:
overrides["data"] = cfg.task.data
try:
lms, _ = checkpoint_utils.load_model_ensemble(
[cfg.generation.lm_path], arg_overrides=overrides, task=None
)
except:
logger.warning(
f"Failed to load language model! Please make sure that the language model dict is the same "
f"as target dict and is located in the data dir ({cfg.task.data})"
)
raise
assert len(lms) == 1
else:
lms = [None]
# Move models to GPU
for model, ckpt_path in zip(
models, utils.split_paths(
cfg.common_eval.path)):
if kwargs['ema_eval']:
logger.info("loading EMA weights from {}".format(ckpt_path))
model.load_state_dict(
checkpoint_utils.load_ema_from_checkpoint(ckpt_path)['model'])
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
dataset=task.dataset(cfg.dataset.gen_subset)
datalines = data_fl.readlines()
predict_context_task = []
gt_context_task = []
GFlops = 0
inference_times = 0
for i,dataline in tqdm(enumerate(datalines)):
data_point = json.loads(dataline)
img_path = os.path.join(IMG_PREFIX, data_point['img_local_path'])
caption1 = data_point['caption1'] if "caption1" in data_point else ""
caption2 = data_point['caption2'] if "caption2" in data_point else ""
sample=data_preprocess(dataset, img_path, caption1, caption2, use_cuda, cfg)
start = time()
result, scores, valid_result = eval_step(
task, None, models, sample, **kwargs)
inference_times += time() - start
answer = valid_result.sum(0, keepdim=True).argmax()
if answer == 1:
answer = 'yes'
else:
answer = 'no'
predict_context_task.append(CONTEXT[answer])
gt_context_task.append(data_point['context_label'])
macs, params = get_model_complexity_info(models[0], sample, task, as_strings=True,
print_per_layer_stat=False, verbose=False)
# Extract the numerical value
flops = eval(re.findall(r'([\d.]+)', macs)[0])*2
# Extract the unit
flops_unit = re.findall(r'([A-Za-z]+)', macs)[0][0]
print('Computational complexity: {:<8}'.format(macs))
print('Computational complexity: {} {}Flops'.format(flops, flops_unit))
print('Number of parameters: {:<8}'.format(params))
GFlops += flops
print("accuracy task 1: ", sklearn.metrics.accuracy_score(gt_context_task, predict_context_task))
print("f1 - score task 1: ", sklearn.metrics.f1_score(gt_context_task, predict_context_task))
print("Average precision task 1: ", sklearn.metrics.average_precision_score(gt_context_task, predict_context_task))
print(f"Average GFlops per {len(datalines)} samples: {GFlops/len(datalines)} {flops_unit}")
print('Number of parameters: {:<8}'.format(params))
print(f"Average inference time per {len(datalines)} samples for task 1: {inference_times/len(datalines)} seconds")
def cli_main():
parser = options.get_generation_parser()
parser.add_argument(
"--ema-eval",
action='store_true',
help="Use EMA weights to make evaluation.")
parser.add_argument(
"--beam-search-vqa-eval",
action='store_true',
help="Use beam search for vqa evaluation (faster inference speed but sub-optimal result), if not specified, we compute scores for each answer in the candidate set, which is slower but can obtain best result.")
parser.add_argument("--zero-shot", action='store_true')
args = options.parse_args_and_arch(parser)
cfg = convert_namespace_to_omegaconf(args)
distributed_utils.call_main(
cfg,
main,
ema_eval=args.ema_eval,
beam_search_vqa_eval=args.beam_search_vqa_eval,
zero_shot=args.zero_shot,
)
if __name__ == "__main__":
cli_main()