-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw9_2.py
37 lines (32 loc) · 1001 Bytes
/
hw9_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
lambda_rate = 300 # Average number of visitors per day
num_days = 365 * 5 # Simulate for 5 years
daily_visitors = []
for _ in range(num_days):
time = 0
visitors = 0
while time < 1: # Simulate one day
time += np.random.exponential(1/lambda_rate)
if time < 1:
visitors += 1
daily_visitors.append(visitors)
# Time series plot
plt.figure(figsize=(15, 5))
plt.plot(daily_visitors, label='Daily Visitors')
plt.xlabel('Day')
plt.ylabel('Number of Visitors')
plt.title('Time Series of Daily Visitors')
plt.legend()
plt.show()
# Histogram
plt.figure(figsize=(10, 6))
plt.hist(daily_visitors, bins=range(min(daily_visitors), max(daily_visitors) + 1, 1), density=True)
plt.xlabel('Number of Visitors')
plt.ylabel('Frequency')
plt.title('Histogram of Daily Visitors')
plt.show()
# Calculating the p-value
p_value = sum(np.array(daily_visitors) >= 369) / num_days
print(f'P-Value: {p_value}')