-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathtf_to_pt.py
127 lines (115 loc) · 4.47 KB
/
tf_to_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
from collections import OrderedDict
from typing import Optional
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import numpy as np
import tensorflow as tf
import torch
from audiodiffusion.audio_encoder import AudioEncoder
from keras.models import load_model
from torch import Tensor
if __name__ == "__main__":
"""
Entry point for the tf_to_pt script.
Converts a TensorFlow MP3ToVec model to a PyTorch MP3ToVec model.
Args:
--pt_model_file (str): Path to the PyTorch model file. Default is "models/mp3tovec.ckpt".
--tf_model_file (str): Path to the TensorFlow model file. Default is "models/speccymodel".
Returns:
None
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--pt_model_file",
type=str,
default="models/mp3tovec.ckpt",
help="PyTorch model path",
)
parser.add_argument(
"--tf_model_file",
type=str,
default="models/speccy_model",
help="TensorFlow model path",
)
args = parser.parse_args()
model: Optional[tf.keras.Model] = load_model(
args.tf_model_file,
custom_objects={"cosine_proximity": tf.compat.v1.keras.losses.cosine_proximity},
)
if model is None:
raise ValueError("Model did not load correctly.")
pytorch_model = AudioEncoder()
new_state_dict = OrderedDict()
for conv_block in range(3):
new_state_dict[f"conv_blocks.{conv_block}.sep_conv.depthwise.weight"] = Tensor(
model.get_layer(
f"separable_conv2d_{conv_block + 1}"
).depthwise_kernel.numpy()
).permute(2, 3, 0, 1)
new_state_dict[f"conv_blocks.{conv_block}.sep_conv.pointwise.weight"] = Tensor(
model.get_layer(
f"separable_conv2d_{conv_block + 1}"
).pointwise_kernel.numpy()
).permute(3, 2, 0, 1)
new_state_dict[f"conv_blocks.{conv_block}.sep_conv.pointwise.bias"] = Tensor(
model.get_layer(f"separable_conv2d_{conv_block + 1}").bias.numpy()
)
new_state_dict[f"conv_blocks.{conv_block}.batch_norm.weight"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 1}").gamma.numpy()
)
new_state_dict[f"conv_blocks.{conv_block}.batch_norm.running_mean"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 1}").moving_mean.numpy()
)
new_state_dict[f"conv_blocks.{conv_block}.batch_norm.running_var"] = Tensor(
model.get_layer(
f"batch_normalization_{conv_block + 1}"
).moving_variance.numpy()
)
new_state_dict[f"conv_blocks.{conv_block}.batch_norm.bias"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 1}").beta.numpy()
)
new_state_dict[f"dense_block.batch_norm.weight"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 2}").gamma.numpy() # type: ignore
)
new_state_dict[f"dense_block.batch_norm.running_mean"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 2}").moving_mean.numpy() # type: ignore
)
new_state_dict[f"dense_block.batch_norm.running_var"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 2}").moving_variance.numpy() # type: ignore
)
new_state_dict[f"dense_block.batch_norm.bias"] = Tensor(
model.get_layer(f"batch_normalization_{conv_block + 2}").beta.numpy() # type: ignore
)
new_state_dict[f"dense_block.dense.weight"] = Tensor(
model.get_layer(f"dense_1").kernel.numpy()
).permute(1, 0)
new_state_dict[f"dense_block.dense.bias"] = Tensor(
model.get_layer(f"dense_1").bias.numpy()
)
new_state_dict[f"embedding.weight"] = Tensor(
model.get_layer(f"dense_2").kernel.numpy()
).permute(1, 0)
new_state_dict[f"embedding.bias"] = Tensor(model.get_layer(f"dense_2").bias.numpy())
pytorch_model.eval()
pytorch_model.load_state_dict(new_state_dict, strict=False)
torch.save(
{
"state_dict": {
f"model.{k}": v for k, v in pytorch_model.state_dict().items()
},
},
args.pt_model_file,
)
# test
pytorch_model.eval()
np.random.seed(42)
example = np.random.random_sample((1, 96, 216, 1))
with torch.no_grad():
assert (
np.abs(
pytorch_model(Tensor(example).permute(0, 3, 1, 2)).numpy()
- model(example).numpy()
).max()
< 2e-3
)