diff --git a/kairos/articles/event.html b/kairos/articles/event.html index 14ac9d04b..81815c72d 100644 --- a/kairos/articles/event.html +++ b/kairos/articles/event.html @@ -393,12 +393,12 @@

Usage boot <- bootstrap(model, n = 30) head(boot) #> min mean max Q5 Q95 -#> LZ1105 414614.9 424987.1 437575.5 416075.0 435566.9 -#> LZ1103 391861.2 418008.3 437350.6 398694.4 432551.2 -#> LZ1100 403966.3 424155.9 441489.1 408106.5 437782.7 -#> LZ1099 396966.2 401200.7 405359.2 397237.2 404649.7 -#> LZ1097 351417.8 397003.5 449091.5 358662.9 431811.8 -#> LZ1096 264824.9 317501.8 410236.2 264824.9 377882.2 +#> LZ1105 417002.6 425586.0 437067.8 417767.2 434008.4 +#> LZ1103 392123.4 417791.0 430785.9 403609.7 429485.5 +#> LZ1100 393313.2 424023.5 449473.7 401792.5 443724.7 +#> LZ1099 396948.4 400796.1 405436.7 398289.1 404338.2 +#> LZ1097 349923.6 392737.8 427551.0 358605.9 421320.1 +#> LZ1096 264824.9 302095.2 337530.5 264824.9 332856.6

References diff --git a/kairos/index.html b/kairos/index.html index 3944fa1cb..b8af2cc7d 100644 --- a/kairos/index.html +++ b/kairos/index.html @@ -121,7 +121,7 @@

Overview Frerebeau N (2023). _kairos: Analysis of Chronological Patterns from Archaeological Count Data_. Université Bordeaux Montaigne, Pessac, France. doi:10.5281/zenodo.5653896 - <https://doi.org/10.5281/zenodo.5653896>, R package version 2.0.1, + <https://doi.org/10.5281/zenodo.5653896>, R package version 2.0.2, <https://packages.tesselle.org/kairos/>. A BibTeX entry for LaTeX users is @@ -132,7 +132,7 @@

Overview year = {2023}, organization = {Université Bordeaux Montaigne}, address = {Pessac, France}, - note = {R package version 2.0.1}, + note = {R package version 2.0.2}, url = {https://packages.tesselle.org/kairos/}, doi = {10.5281/zenodo.5653896}, } diff --git a/kairos/pkgdown.yml b/kairos/pkgdown.yml index 0cf94fdd6..1bc9abbdd 100644 --- a/kairos/pkgdown.yml +++ b/kairos/pkgdown.yml @@ -5,7 +5,7 @@ articles: bibliography: bibliography.html event: event.html seriation: seriation.html -last_built: 2023-11-26T15:26Z +last_built: 2023-11-26T15:32Z urls: reference: https://packages.tesselle.org/kairos/reference article: https://packages.tesselle.org/kairos/articles diff --git a/kairos/reference/Rplot005.png b/kairos/reference/Rplot005.png index e356b72c1..b871e6af7 100644 Binary files a/kairos/reference/Rplot005.png and b/kairos/reference/Rplot005.png differ diff --git a/kairos/reference/Rplot006.png b/kairos/reference/Rplot006.png index fc77cb63e..4bfcbd4e0 100644 Binary files a/kairos/reference/Rplot006.png and b/kairos/reference/Rplot006.png differ diff --git a/kairos/reference/aoristic-5.png b/kairos/reference/aoristic-5.png index 275ab23ff..1379dc18b 100644 Binary files a/kairos/reference/aoristic-5.png and b/kairos/reference/aoristic-5.png differ diff --git a/kairos/reference/aoristic-6.png b/kairos/reference/aoristic-6.png index 5b9a6fb29..f027023d8 100644 Binary files a/kairos/reference/aoristic-6.png and b/kairos/reference/aoristic-6.png differ diff --git a/kairos/reference/mcd-2.png b/kairos/reference/mcd-2.png index 64e5356b3..cb4b7cbe8 100644 Binary files a/kairos/reference/mcd-2.png and b/kairos/reference/mcd-2.png differ diff --git a/kairos/reference/mcd.html b/kairos/reference/mcd.html index 268ff3035..d6cb70f70 100644 --- a/kairos/reference/mcd.html +++ b/kairos/reference/mcd.html @@ -169,11 +169,11 @@

Exampleshead(boot) #> original mean bias error #> LZ0789 757.2917 NaN NaN NA -#> LZ0783 796.6667 877.3516 80.684918 123.04823 -#> LZ0782 797.5000 865.2036 67.703582 114.79835 -#> LZ0778 952.5862 992.4772 39.890967 98.04027 -#> LZ0777 996.2963 987.9246 -8.371707 74.09417 -#> LZ0776 1016.0714 1041.8303 25.758917 67.90664 +#> LZ0783 796.6667 844.3302 47.663512 113.75952 +#> LZ0782 797.5000 804.1673 6.667310 65.39379 +#> LZ0778 952.5862 979.1447 26.558445 102.13488 +#> LZ0777 996.2963 1002.7325 6.436184 82.99103 +#> LZ0776 1016.0714 1047.2820 31.210578 76.34201 ## Jackknife resampling jack <- jackknife(mc_dates) diff --git a/kairos/reference/plot_aoristic-5.png b/kairos/reference/plot_aoristic-5.png index 36bf64881..f26ef328e 100644 Binary files a/kairos/reference/plot_aoristic-5.png and b/kairos/reference/plot_aoristic-5.png differ diff --git a/kairos/reference/plot_aoristic-6.png b/kairos/reference/plot_aoristic-6.png index 0363f9e75..2d54ec639 100644 Binary files a/kairos/reference/plot_aoristic-6.png and b/kairos/reference/plot_aoristic-6.png differ diff --git a/kairos/reference/plot_mcd-2.png b/kairos/reference/plot_mcd-2.png index c9db1e0dc..736b02a9c 100644 Binary files a/kairos/reference/plot_mcd-2.png and b/kairos/reference/plot_mcd-2.png differ diff --git a/kairos/reference/plot_mcd.html b/kairos/reference/plot_mcd.html index d8161c62f..d0dae5371 100644 --- a/kairos/reference/plot_mcd.html +++ b/kairos/reference/plot_mcd.html @@ -214,13 +214,13 @@

Examples## Bootstrap resampling boot <- bootstrap(mc_dates, n = 30) head(boot) -#> original mean bias error -#> LZ0789 757.2917 NaN NaN NA -#> LZ0783 796.6667 859.4699 62.80322 123.19509 -#> LZ0782 797.5000 842.4981 44.99815 97.15529 -#> LZ0778 952.5862 975.3842 22.79803 113.94568 -#> LZ0777 996.2963 1017.4194 21.12312 80.70935 -#> LZ0776 1016.0714 1052.2386 36.16715 83.04551 +#> original mean bias error +#> LZ0789 757.2917 NaN NaN NA +#> LZ0783 796.6667 849.0927 52.42608 129.86685 +#> LZ0782 797.5000 837.4301 39.93006 90.02861 +#> LZ0778 952.5862 997.4710 44.88481 84.95807 +#> LZ0777 996.2963 1029.6155 33.31919 89.61071 +#> LZ0776 1016.0714 1005.0231 -11.04830 62.41711 ## Jackknife resampling jack <- jackknife(mc_dates) diff --git a/kairos/reference/roc-5.png b/kairos/reference/roc-5.png index e50857f5d..1bee44516 100644 Binary files a/kairos/reference/roc-5.png and b/kairos/reference/roc-5.png differ diff --git a/kairos/reference/roc-6.png b/kairos/reference/roc-6.png index a3b162549..9147e7c49 100644 Binary files a/kairos/reference/roc-6.png and b/kairos/reference/roc-6.png differ diff --git a/kairos/search.json b/kairos/search.json index 9dbfd7c94..29ee72a24 100644 --- a/kairos/search.json +++ b/kairos/search.json @@ -1 +1 @@ -[{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"definition","dir":"Articles","previous_headings":"","what":"Definition","title":"Event Date Model","text":"Event accumulation dates density estimates occupation duration archaeological site (L. Bellanger, Husi, Tomassone 2006; L. Bellanger, Tomassone, Husi 2008; Lise Bellanger Husi 2012). event date estimation terminus post-quem archaeological assemblage. accumulation date represents “chronological profile” assemblage. According Lise Bellanger Husi (2012), accumulation date can interpreted “best […] formation process reflecting duration succession events scale archaeological time, worst, imprecise dating due contamination context residual intrusive material.” words, accumulation dates estimate occurrence archaeological events rhythms long term.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"event-date","dir":"Articles","previous_headings":"Definition","what":"Event Date","title":"Event Date Model","text":"Event dates estimated fitting Gaussian multiple linear regression model factors resulting correspondence analysis - somewhat similar idea introduced Poblome Groenen (2003). model results known dates selection reliable contexts allows predict event dates remaining assemblages. First, correspondence analysis (CA) carried summarize information count matrix \\(X\\). correspondence analysis \\(X\\) provides coordinates \\(m\\) rows along \\(q\\) factorial components, denoted \\(f_{ik} ~\\forall \\\\left[ 1,m \\right], k \\\\left[ 1,q \\right]\\). , assuming \\(n\\) assemblages reliably dated another source, Gaussian multiple linear regression model fitted factorial components \\(n\\) dated assemblages: \\[ t^E_i = \\beta_{0} + \\sum_{k = 1}^{q} \\beta_{k} f_{ik} + \\epsilon_i ~\\forall \\[1,n] \\] \\(t^E_i\\) known date point estimate \\(\\)th assemblage, \\(\\beta_k\\) regression coefficients \\(\\epsilon_i\\) normally, identically independently distributed random variables, \\(\\epsilon_i \\sim \\mathcal{N}(0,\\sigma^2)\\). \\(n\\) equations stacked together written matrix notation \\[ t^E = F \\beta + \\epsilon \\] \\(\\epsilon \\sim \\mathcal{N}_{n}(0,\\sigma^2 I_{n})\\), \\(\\beta = \\left[ \\beta_0 \\cdots \\beta_q \\right]' \\\\mathbb{R}^{q+1}\\) \\[ F = \\begin{bmatrix} 1 & f_{11} & \\cdots & f_{1q} \\\\ 1 & f_{21} & \\cdots & f_{2q} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 1 & f_{n1} & \\cdots & f_{nq} \\end{bmatrix} \\] Assuming \\(F'F\\) nonsingular, ordinary least squares estimator unknown parameter vector \\(\\beta\\) : \\[ \\widehat{\\beta} = \\left( F'F \\right)^{-1} F' t^E \\] Finally, given vector CA coordinates \\(f_i\\), predicted event date assemblage \\(t^E_i\\) : \\[ \\widehat{t^E_i} = f_i \\hat{\\beta} \\] endpoints \\(100(1 − \\alpha)\\)% associated prediction confidence interval given : \\[ \\widehat{t^E_i} \\pm t_{\\alpha/2,n-q-1} \\sqrt{\\widehat{V}} \\] \\(\\widehat{V_i}\\) estimator variance prediction error: \\[ \\widehat{V_i} = \\widehat{\\sigma}^2 \\left( f_i^T \\left( F'F \\right)^{-1} f_i + 1 \\right) \\] \\(\\widehat{\\sigma} = \\frac{\\sum_{=1}^{n} \\left( t_i - \\widehat{t^E_i} \\right)^2}{n - q - 1}\\). probability density event date \\(t^E_i\\) can described normal distribution: \\[ t^E_i \\sim \\mathcal{N}(\\widehat{t^E_i},\\widehat{V_i}) \\]","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"accumulation-date","dir":"Articles","previous_headings":"Definition","what":"Accumulation Date","title":"Event Date Model","text":"row (assemblages) columns (types) CA coordinates linked together -called transition formulae, event dates type \\(t^E_j\\) can predicted following procedure . , accumulation date \\(t^A_i\\) defined weighted mean event date ceramic types found given assemblage. weights conditional frequencies respective types assemblage (akin MCD). accumulation date estimated : \\[ \\widehat{t^A_i} = \\sum_{j = 1}^{p} \\widehat{t^E_j} \\times \\frac{x_{ij}}{x_{\\cdot}} \\] probability density accumulation date \\(t^A_i\\) can described Gaussian mixture: \\[ t^A_i \\sim \\frac{x_{ij}}{x_{\\cdot}} \\mathcal{N}(\\widehat{t^E_j},\\widehat{V_j}^2) \\] Interestingly, integral accumulation date offers estimates cumulative occurrence archaeological events, close enough definition tempo plot introduced Dye (2016).","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"limitation","dir":"Articles","previous_headings":"","what":"Limitation","title":"Event Date Model","text":"Event accumulation dates estimation relies conditions assumptions matrix seriation problem. Dunnell (1970) summarizes conditions assumptions follows. homogeneity conditions state groups included seriation must: comparable duration. Belong cultural tradition. Come local area. mathematical assumptions state distribution historical temporal class: continuous time. Exhibits form unimodal curve. Theses assumptions create distributional model ordering accomplished arranging matrix class distributions approximate required pattern. resulting order inferred chronological. Predicted dates interpreted care: dates highly dependent range known dates fit regression.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"usage","dir":"Articles","previous_headings":"","what":"Usage","title":"Event Date Model","text":"package provides implementation chronological modeling method developed Lise Bellanger Husi (2012). method slightly modified allows construction different probability density curves archaeological assemblage dates (event, activity tempo). Resampling methods can used check stability resulting model. jackknife() used, one type/fabric removed time statistics recalculated. way, one can assess whether certain type/fabric substantial influence date estimate. bootstrap() used, large number new bootstrap assemblages created, sample size, resampling original assemblage replacement. , examination bootstrap statistics makes possible pinpoint assemblages require investigation.","code":"## Bellanger et al. did not publish the data supporting their demonstration: ## no replication of their results is possible. ## Here is an example using the Zuni dataset from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) ## The names of the vector entries must match the names of the assemblages zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, dates = zuni_dates, rank = 10) ## Model summary ## (results are expressed in rata die) summary(model) #> #> Call: #> stats::lm(formula = date ~ ., data = contexts) #> #> Residuals: #> LZ0852 LZ0610 LZ0578 LZ0569 LZ0563 LZ0329 LZ0322 LZ0279 #> -479.32 351.48 1283.51 163.57 -1626.71 -290.90 950.04 -1427.33 #> LZ0227 LZ0067 LZ0066 LZ0005Q CS16 CS144 LZ1209 #> -280.59 -50.24 266.02 45.83 -105.47 1016.24 183.86 #> attr(,\"class\") #> [1] \"RataDie\" #> attr(,\"class\")attr(,\"package\") #> [1] \"aion\" #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 425015.4 1064.9 399.095 2.36e-10 *** #> F1 -57813.4 602.6 -95.938 7.08e-08 *** #> F2 9387.7 615.2 15.260 0.000108 *** #> F3 -2047.2 789.1 -2.594 0.060411 . #> F4 3928.9 2127.1 1.847 0.138452 #> F5 -1146.2 1442.3 -0.795 0.471276 #> F6 995.1 485.4 2.050 0.109663 #> F7 1667.0 1906.7 0.874 0.431304 #> F8 4126.0 1264.9 3.262 0.031027 * #> F9 -1889.1 1079.6 -1.750 0.155039 #> F10 -144.8 967.9 -0.150 0.888300 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 1494 on 4 degrees of freedom #> Multiple R-squared: 0.9997, Adjusted R-squared: 0.999 #> F-statistic: 1433 on 10 and 4 DF, p-value: 1.168e-06 ## Extract model coefficients ## (convert results to Gregorian years) coef(model, calendar = CE()) #> (Intercept) F1 F2 F3 F4 F5 #> 1163.6512430 -158.2887134 25.7005062 -5.6059619 10.7559523 -3.1402928 #> F6 F7 F8 F9 F10 #> 2.7236281 4.5617156 11.2951729 -5.1728421 -0.3984238 ## Extract residual standard deviation ## (convert results to Gregorian years) sigma(model, calendar = CE()) #> [1] 4.088072 ## Extract model residuals ## (convert results to Gregorian years) resid(model, calendar = CE()) #> [1] -1.3132066 0.9602214 3.5123344 0.4453877 -4.4554781 -0.7975492 #> [7] 2.6001038 -3.9104984 -0.7693659 -0.1399926 0.7260925 0.1228117 #> [13] -0.2908912 2.7814906 0.5009809 ## Extract model fitted values ## (convert results to Gregorian years) fitted(model, calendar = CE()) #> [1] 1217.3105 1073.0370 1176.4849 1096.5531 1210.4540 1076.7948 1106.3999 #> [8] 1122.9078 1104.7666 863.1376 1110.2712 858.8744 1328.2882 1259.2185 #> [15] 1250.4963 ## Estimate event dates ## (results are expressed in rata die) eve <- predict_event(model, margin = 1, level = 0.95) head(eve) #> date lower upper error #> LZ1105 426454.0 420445.5 432462.4 2164.087 #> LZ1103 417145.8 414689.9 419601.7 884.558 #> LZ1100 421968.1 416394.9 427541.4 2007.317 #> LZ1099 400974.7 396642.1 405307.4 1560.503 #> LZ1097 397176.5 393404.6 400948.3 1358.530 #> LZ1096 306371.0 300801.2 311940.7 2006.057 ## Activity plot plot(model, type = \"activity\", event = TRUE, select = 1:6) plot(model, type = \"activity\", event = TRUE, select = \"LZ1105\") ## Tempo plot plot(model, type = \"tempo\", select = \"LZ1105\") ## Check model variability ## (results are expressed in rata die) ## Warning: this may take a few seconds ## Jackknife fabrics jack <- jackknife(model) head(jack) #> date lower upper error bias #> LZ1105 155634807 155628798 155640815 2164.087 2638541997 #> LZ1103 152396320 152393864 152398776 884.558 2583645955 #> LZ1100 154171872 154166299 154177445 2007.317 2613748366 #> LZ1099 146238877 146234544 146243210 1560.503 2479244339 #> LZ1097 145631868 145628096 145635640 1358.530 2468989755 #> LZ1096 112226452 112220882 112232021 2006.057 1902641373 ## Bootstrap of assemblages boot <- bootstrap(model, n = 30) head(boot) #> min mean max Q5 Q95 #> LZ1105 414614.9 424987.1 437575.5 416075.0 435566.9 #> LZ1103 391861.2 418008.3 437350.6 398694.4 432551.2 #> LZ1100 403966.3 424155.9 441489.1 408106.5 437782.7 #> LZ1099 396966.2 401200.7 405359.2 397237.2 404649.7 #> LZ1097 351417.8 397003.5 449091.5 358662.9 431811.8 #> LZ1096 264824.9 317501.8 410236.2 264824.9 377882.2"},{"path":[]},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Seriation","text":"matrix seriation problem archaeology based three conditions two assumptions, Dunnell (1970) summarizes follows. homogeneity conditions state groups included seriation must: comparable duration, Belong cultural tradition, Come local area. mathematical assumptions state distribution historical temporal class: continuous time, Exhibits form unimodal curve. Theses assumptions create distributional model ordering accomplished arranging matrix class distributions approximate required pattern. resulting order inferred chronological.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"reciprocal-ranking","dir":"Articles","previous_headings":"","what":"Reciprocal ranking","title":"Seriation","text":"Reciprocal ranking iteratively rearrange rows /columns according weighted rank data matrix convergence (Ihm 2005). given incidence matrix \\(C\\): rows \\(C\\) rearranged increasing order : \\[ x_{} = \\sum_{j = 1}^{p} j \\frac{c_{ij}}{c_{\\cdot}} \\] columns \\(C\\) rearranged similar way: \\[ y_{j} = \\sum_{= 1}^{m} \\frac{c_{ij}}{c_{\\cdot j}} \\] two steps repeated convergence. Note procedure enter infinite loop. positive difference column mean percentage (french “écart positif au pourcentage moyen”, EPPM) represents deviation situation statistical independence (Desachy 2004). independence can interpreted absence relationships types chronological order assemblages, EPPM useful graphical tool explore significance relationship rows columns related seriation (Desachy 2004).","code":"## Build an incidence matrix with random data set.seed(12345) bin <- sample(c(TRUE, FALSE), 400, TRUE, c(0.6, 0.4)) incidence1 <- matrix(bin, nrow = 20) ## Get seriation order on rows and columns ## If no convergence is reached before the maximum number of iterations (100), ## it stops with a warning. (indices <- seriate_rank(incidence1, margin = c(1, 2), stop = 100)) #> #> Permutation order for matrix seriation: #> - Row order: 6 15 12 14 2 5 10 8 13 20 16 18 19 7 9 1 3 11 17 4... #> - Column order: 9 4 2 8 3 1 6 5 16 20 15 14 12 17 13 10 19 7 11 18... ## Permute matrix rows and columns incidence2 <- permute(incidence1, indices) ## Plot matrix tabula::plot_heatmap(incidence1, col = c(\"white\", \"black\")) tabula::plot_heatmap(incidence2, col = c(\"white\", \"black\")) ## Replicates Desachy 2004 data(\"compiegne\", package = \"folio\") ## Plot frequencies and EPPM values tabula::seriograph(compiegne) ## Get seriation order for columns on EPPM using the reciprocal ranking method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Permute columns compiegne_permuted <- permute(compiegne, indices) ## Plot frequencies and EPPM values tabula::seriograph(compiegne_permuted)"},{"path":[]},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"seriation","dir":"Articles","previous_headings":"Correspondence analysis","what":"Seriation","title":"Seriation","text":"Correspondence Analysis (CA) effective method seriation archaeological assemblages. order rows columns given coordinates along one dimension CA space, assumed account temporal variation. direction temporal change within correspondence analysis space arbitrary: additional information needed determine actual order time.","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni) ## Get row permutations from CA coordinates (zun_indices <- seriate_average(zuni, margin = c(1, 2))) #> #> Permutation order for matrix seriation: #> - Row order: 372 387 350 367 110 417 364 407 357 160 344 348 35... #> - Column order: 18 14 17 16 13 15 9 8 12 11 6 7 5 10 4 2 3 1... ## Plot CA results dimensio::biplot(zun_indices) ## Permute data matrix zuni_permuted <- permute(zuni, zun_indices) ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni_permuted)"},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"refining","dir":"Articles","previous_headings":"Correspondence analysis","what":"Refining","title":"Seriation","text":"Peeples Schachner (2012) propose procedure identify samples subject sampling error samples underlying structural relationships might influencing ordering along CA space. relies partial bootstrap approach CA-based seriation sample replicated n times. maximum dimension length convex hull around sample point cloud allows remove samples given cutoff value. According Peeples Schachner (2012), “[] point removal procedure [results ] reduced dataset position individuals within CA highly stable produces ordering consistent assumptions frequency seriation.”","code":"## Partial bootstrap CA ## Warning: this may take a few seconds! zuni_boot <- dimensio::bootstrap(zun_indices, n = 30) ## Bootstrap CA results for the rows ## (add convex hull) zuni_boot |> dimensio::viz_rows(col = \"lightgrey\", pch = 16) |> dimensio::viz_hull(col = adjustcolor(\"#004488\", alpha = 0.5)) ## Bootstrap CA results for the columns zuni_boot |> dimensio::viz_columns(pch = 16) ## Replicates Peeples and Schachner 2012 results ## Samples with convex hull maximum dimension length greater than the cutoff ## value will be marked for removal. ## Define cutoff as one standard deviation above the mean fun <- function(x) { mean(x) + sd(x) } (zuni_refine <- seriate_refine(zun_indices, cutoff = fun, margin = 1)) #> #> Permutation order for matrix seriation: #> - Row order: 372 350 387 367 110 417 364 357 407 160 344 348 35... #> - Column order: 17 18 14 16 13 15 9 8 12 11 6 10 7 5 4 2 3 1... #> Partial bootstrap refinement: #> - Cutoff value: 1.77 #> - Rows to keep: 360 of 420 (86%) ## Plot CA results for the rows dimensio::viz_rows(zuni_refine, highlight = \"observation\", pch = c(16, 15)) ## Histogram of convex hull maximum dimension length hist(zuni_refine[[\"length\"]], xlab = \"Maximum length\", main = \"\") abline(v = zuni_refine[[\"cutoff\"]], col = \"red\") ## Permute data matrix zuni_permuted2 <- permute(zuni, zuni_refine) ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni_permuted2)"},{"path":[]},{"path":[]},{"path":"https://packages.tesselle.org/kairos/index.html","id":"overview","dir":"","previous_headings":"","what":"Overview","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"convenient reproducible toolkit relative absolute dating analysis chronological patterns. package includes functions chronological modeling dating archaeological assemblages count data. provides methods matrix seriation. also allows compute time point estimates density estimates occupation duration archaeological site. kairos provides methods : Matrix seriation: seriate_rank() seriate_average() Mean ceramic date estimation (South 1977): mcd() Event accumulation date estimation (Bellanger Husi 2012): event() Aoristic analysis (Ratcliffe 2000): aoristic() Chronological apportioning (Roberts et al. 2012): apportion() tabula companion package kairos provides functions visualization analysis archaeological count data.","code":"To cite kairos in publications use: Frerebeau N (2023). _kairos: Analysis of Chronological Patterns from Archaeological Count Data_. Université Bordeaux Montaigne, Pessac, France. doi:10.5281/zenodo.5653896 , R package version 2.0.1, . A BibTeX entry for LaTeX users is @Manual{, author = {Nicolas Frerebeau}, title = {{kairos: Analysis of Chronological Patterns from Archaeological Count Data}}, year = {2023}, organization = {Université Bordeaux Montaigne}, address = {Pessac, France}, note = {R package version 2.0.1}, url = {https://packages.tesselle.org/kairos/}, doi = {10.5281/zenodo.5653896}, } This package is a part of the tesselle project ."},{"path":"https://packages.tesselle.org/kairos/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"can install released version kairos CRAN : development version GitHub :","code":"install.packages(\"kairos\") # install.packages(\"remotes\") remotes::install_github(\"tesselle/kairos\")"},{"path":"https://packages.tesselle.org/kairos/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"kairos v2.0 uses aion internal date representation. Look vignette(\"aion\") start. assumes keep data tidy: variable (type/taxa) must saved column observation (sample/case) must saved row.","code":"## Load packages library(kairos) ## Data from Husi 2022 data(\"loire\", package = \"folio\") keep <- c(\"Anjou\", \"Blésois\", \"Orléanais\", \"Haut-Poitou\", \"Touraine\") loire <- subset(loire, area %in% keep) ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (weights) by group ao <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) ## Plot plot(ao, col = \"grey\") ## Rate of change by group ro <- roc(ao, n = 30) plot(ro)"},{"path":"https://packages.tesselle.org/kairos/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"Please note kairos project released Contributor Code Conduct. contributing project, agree abide terms.","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Aoristic Sum — AoristicSum-class","title":"Aoristic Sum — AoristicSum-class","text":"S4 class represent aoristic analysis results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Aoristic Sum — AoristicSum-class","text":"breaks RataDie vector giving date break time-blocks. weights numeric vector. groups character vector store group names (). p numeric array giving aorisitic probabilities.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Aoristic Sum — AoristicSum-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Aoristic Sum — AoristicSum-class","text":"code snippets , x AoristicSum object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Aoristic Sum — AoristicSum-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Count Apportioning — CountApportion-class","title":"Count Apportioning — CountApportion-class","text":"S4 class represent artifact apportioning results. Gives apportioning artifact types (columns) per site (rows) per period (dim. 3).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Count Apportioning — CountApportion-class","text":".Data \\(m \\times p \\times k\\) array giving proportion artifact type (\\(p\\)) given period (\\(k\\)). p \\(m \\times p \\times k\\) array giving probability apportioning artifact type (\\(p\\)) given period (\\(k\\)). method character string specifying distribution used apportioning (type popularity curve). length-one numeric vector giving beginning period interest (years AD). length-one numeric vector giving end period interest (years AD). step length-one numeric vector giving step size, .e. width time step apportioning (years AD).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Count Apportioning — CountApportion-class","text":"class inherits base array.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Count Apportioning — CountApportion-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Date Model — EventDate-class","title":"Date Model — EventDate-class","text":"S4 class store event accumulation times archaeological assemblages.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Date Model — EventDate-class","text":"dates length-\\(m\\) numeric vector dates expressed rata die. model multiple linear model: Gaussian multiple linear regression model fitted event date estimation prediction. keep integer vector giving subscripts CA components keep.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Date Model — EventDate-class","text":"Dates internally stored rata die. class inherits dimensio::CA.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"extract","dir":"Reference","previous_headings":"","what":"Extract","title":"Date Model — EventDate-class","text":"code snippets , x EventDate object. time(x) Extract dates assemblages. coef(x) Extract model coefficients. fitted(x) Extract model fitted values. residuals(x) Extract model residuals. sigma(x) Extract residual standard deviation. terms(x) Extract model terms.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Date Model — EventDate-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Frequency Increment Test — IncrementTest-class","title":"Frequency Increment Test — IncrementTest-class","text":"S4 class represent Frequency Increment Test results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Frequency Increment Test — IncrementTest-class","text":"statistic numeric vector giving values t-statistic. parameter integer giving degrees freedom t-statistic. p_value numeric vector giving p-value test.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Frequency Increment Test — IncrementTest-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Frequency Increment Test — IncrementTest-class","text":"code snippets , x IncrementTest object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Frequency Increment Test — IncrementTest-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Date — MeanDate-class","title":"Mean Date — MeanDate-class","text":"S4 class store weighted mean date (e.g. Mean Ceramic Date) archaeological assemblages.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Mean Date — MeanDate-class","text":"dates length-\\(p\\) numeric vector giving dates (ceramic) types expressed rata die. replications numeric matrix giving replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Mean Date — MeanDate-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Mean Date — MeanDate-class","text":"code snippets , x MeanDate object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Mean Date — MeanDate-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Permutation Order — PermutationOrder-class","title":"Permutation Order — PermutationOrder-class","text":"S4 classes represent permutation order.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Permutation Order — PermutationOrder-class","text":"rows_order integer vector giving rows permutation. columns_order integer vector giving columns permutation.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"subset","dir":"Reference","previous_headings":"","what":"Subset","title":"Permutation Order — PermutationOrder-class","text":"code snippets , x PermutationOrder object. x[[]] Extract information slot selected subscript . length-one character vector.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Permutation Order — PermutationOrder-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Rate of Change — RateOfChange-class","title":"Rate of Change — RateOfChange-class","text":"S4 class represent rates change aoristic analysis.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Rate of Change — RateOfChange-class","text":"replicates non-negative integer giving number replications. groups character vector store group names ().","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Rate of Change — RateOfChange-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Rate of Change — RateOfChange-class","text":"code snippets , x AoristicSum object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rate of Change — RateOfChange-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Partial Bootstrap CA — RefinePermutationOrder-class","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"S4 class store partial bootstrap correspondence analysis results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"length numeric vector giving convex hull maximum dimension length. cutoff length-one numeric vector giving cutoff value samples selection. keep integer vector giving subscript variables kept.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":null,"dir":"Reference","previous_headings":"","what":"Aoristic Analysis — aoristic","title":"Aoristic Analysis — aoristic","text":"Computes aoristic sum.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Aoristic Analysis — aoristic","text":"","code":"aoristic(x, y, ...) # S4 method for numeric,numeric aoristic( x, y, step = 1, start = min(x), end = max(y), calendar = CE(), weight = TRUE, groups = NULL ) # S4 method for ANY,missing aoristic( x, step = 1, start = NULL, end = NULL, calendar = CE(), weight = TRUE, groups = NULL )"},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Aoristic Analysis — aoristic","text":"x, y numeric vector giving lower upper boundaries time intervals, respectively. y missing, attempt made interpret x suitable way (see grDevices::xy.coords()). ... Currently used. step length-one integer vector giving step size, .e. width time step time series (defaults \\(1\\), .e. annual level). start length-one numeric vector giving beginning time window. end length-one numeric vector giving end time window. calendar TimeScale object specifying calendar x y (see calendar()). Defaults Gregorian Common Era. weight logical scalar: aoristic sum weighted length periods (default). FALSE aoristic sum number elements within time block. groups factor vector sense .factor(groups) defines grouping. x list (data.frame), groups can length-one vector giving index grouping component (column) x.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Aoristic Analysis — aoristic","text":"AoristicSum object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Aoristic Analysis — aoristic","text":"Aoristic analysis used determine probability contemporaneity archaeological sites assemblages. aoristic analysis distributes probability event uniformly temporal fraction period considered. aoristic sum distribution total number events assumed within period. Muller Hinz (2018) pointed overlapping temporal intervals related period categorization dating accuracy likely bias analysis. proposed weighting method overcome problem. method implemented (moment), see aoristAAR package.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Aoristic Analysis — aoristic","text":"Crema, E. R. (2012). Modelling Temporal Uncertainty Archaeological Analysis. Journal Archaeological Method Theory, 19(3): 440-61. doi:10.1007/s10816-011-9122-3 . Johnson, . (2004). Aoristic Analysis: Seeds New Approach Mapping Archaeological Distributions Time. Ausserer, K. F., Börner, W., Goriany, M. & Karlhuber-Vöckl, L. (ed.), Enter Past - E-Way Four Dimensions Cultural Heritage, Oxford: Archaeopress, p. 448-52. BAR International Series 1227. doi:10.15496/publikation-2085 Müller-Scheeßel, N. & Hinz, M. (2018). Aoristic Research R: Correcting Temporal Categorizations Archaeology. Presented Human History Digital Future (CAA 2018), Tubingen, March 21. https://www.youtube.com/watch?v=bUBukex30QI. Palmisano, ., Bevan, . & Shennan, S. (2017). Comparing Archaeological Proxies Long-Term Population Patterns: Example Central Italy. Journal Archaeological Science, 87: 59-72. doi:10.1016/j.jas.2017.10.001 . Ratcliffe, J. H. (2000). Aoristic Analysis: Spatial Interpretation Unspecific Temporal Events. International Journal Geographical Information Science, 14(7): 669-79. doi:10.1080/136588100424963 . Ratcliffe, J. H. (2002). Aoristic Signatures Spatio-Temporal Analysis High Volume Crime Patterns. Journal Quantitative Criminology, 18(1): 23-43. doi:10.1023/:1013240828824 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Aoristic Analysis — aoristic","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Aoristic Analysis — aoristic","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":null,"dir":"Reference","previous_headings":"","what":"Chronological Apportioning — apportion","title":"Chronological Apportioning — apportion","text":"Chronological Apportioning","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Chronological Apportioning — apportion","text":"","code":"apportion(object, ...) # S4 method for data.frame apportion( object, s0, s1, t0, t1, from = min(s0), to = max(s1), step = 25, method = c(\"uniform\", \"truncated\"), z = 2, progress = getOption(\"kairos.progress\") ) # S4 method for matrix apportion( object, s0, s1, t0, t1, from = min(s0), to = max(s1), step = 25, method = c(\"uniform\", \"truncated\"), z = 2, progress = getOption(\"kairos.progress\") )"},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Chronological Apportioning — apportion","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. s0 length-\\(m\\) numeric vector giving site beginning dates expressed CE years (BCE years must given negative numbers). s1 length-\\(m\\) numeric vector giving site end dates expressed CE years (BCE years must given negative numbers). t0 length-\\(p\\) numeric vector giving type beginning dates expressed CE years (BCE years must given negative numbers). t1 length-\\(p\\) numeric vector giving type end dates expressed CE years (BCE years must given negative numbers). length-one numeric vector giving beginning period interest (years CE). length-one numeric vector giving end period interest (years CE). step length-one integer vector giving step size, .e. width time step apportioning (years CE; defaults \\(25\\)). method character string specifying distribution used (type popularity curve). must one \"uniform\" (uniform distribution) \"truncated\" (truncated standard normal distribution). unambiguous substring can given. z integer value giving lower upper truncation points (defaults \\(2\\)). used method \"truncated\". progress logical scalar: progress bar displayed?","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Chronological Apportioning — apportion","text":"CountApportion object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Chronological Apportioning — apportion","text":"Roberts, J. M., Mills, B. J., Clark, J. J., Haas, W. R., Huntley, D. L. & Trowbridge, M. . (2012). Method Chronological Apportioning Ceramic Assemblages. Journal Archaeological Science, 39(5): 1513-20. doi:10.1016/j.jas.2011.12.022 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Chronological Apportioning — apportion","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce to a Data Frame — data.frame","title":"Coerce to a Data Frame — data.frame","text":"Coerce Data Frame","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce to a Data Frame — data.frame","text":"","code":"# S4 method for MeanDate as.data.frame(x, ..., calendar = getOption(\"kairos.calendar\")) # S4 method for AoristicSum as.data.frame(x, ..., calendar = getOption(\"kairos.calendar\")) # S4 method for IncrementTest as.data.frame(x, row.names = NULL, optional = FALSE, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce to a Data Frame — data.frame","text":"x object. ... parameters passed data.frame(). calendar TimeScale object specifying target calendar (see calendar()). NULL, rata die returned. row.names, optional Currently used.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce to a Data Frame — data.frame","text":"data.frame extra time column giving (decimal) years time series sampled.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce to a Data Frame — data.frame","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":null,"dir":"Reference","previous_headings":"","what":"Event and Accumulation Dates — event","title":"Event and Accumulation Dates — event","text":"Fits date event model.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Event and Accumulation Dates — event","text":"","code":"event(object, dates, ...) # S4 method for data.frame,numeric event(object, dates, rank = NULL, sup_row = NULL, calendar = CE(), ...) # S4 method for matrix,numeric event(object, dates, rank = NULL, sup_row = NULL, calendar = CE(), ...) # S4 method for EventDate summary(object, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Event and Accumulation Dates — event","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates numeric vector dates. named, names must match row names object. ... arguments passed internal methods. rank integer specifying number CA factorial components use linear model fitting (see details). NULL (default), axes corresponding least 60% inertia used. sup_row numeric logical vector specifying indices supplementary rows. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Event and Accumulation Dates — event","text":"EventDate object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Event and Accumulation Dates — event","text":"implementation chronological modeling method proposed Bellanger Husi (2012, 2013). Event accumulation dates density estimates occupation duration archaeological site (Bellanger Husi 2012, 2013). event date estimation terminus post-quem archaeological assemblage. accumulation date represents \"chronological profile\" assemblage. According Bellanger Husi (2012), accumulation date can interpreted \"best [...] formation process reflecting duration succession events scale archaeological time, worst, imprecise dating due contamination context residual intrusive material.\" words, accumulation dates estimate occurrence archaeological events rhythms long term. Dates converted rata die computation. method relies strong archaeological statistical assumptions (see vignette(\"event\")).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Event and Accumulation Dates — event","text":"Bellanger, L. & Husi, P. (2013). Mesurer et modéliser le temps inscrit dans la matière à partir d'une source matérielle : la céramique médiévale. Mesure et Histoire Médiévale. Histoire ancienne et médiévale. Paris: Publication de la Sorbonne, p. 119-134. Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Bellanger, L., Tomassone, R. & Husi, P. (2008). Statistical Approach Dating Archaeological Contexts. Journal Data Science, 6, 135-154. Bellanger, L., Husi, P. & Tomassone, R. (2006). Une approche statistique pour la datation de contextes archéologiques. Revue de Statistique Appliquée, 54(2), 65-81. Bellanger, L., Husi, P. & Tomassone, R. (2006). Statistical Aspects Pottery Quantification Dating Archaeological Contexts. Archaeometry, 48(1), 169-183. doi:10.1111/j.1475-4754.2006.00249.x . Poblome, J. & Groenen, P. J. F. (2003). Constrained Correspondence Analysis Seriation Sagalassos Tablewares. Doerr, M. & Apostolis, S. (eds.), Digital Heritage Archaeology. Athens: Hellenic Ministry Culture.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Event and Accumulation Dates — event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Event and Accumulation Dates — event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Frequency Increment Test — fit","title":"Frequency Increment Test — fit","text":"Frequency Increment Test","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Frequency Increment Test — fit","text":"","code":"fit(object, dates, ...) # S4 method for data.frame,numeric fit(object, dates, calendar = CE(), level = 0.95, roll = FALSE, window = 3) # S4 method for matrix,numeric fit(object, dates, calendar = CE(), level = 0.95, roll = FALSE, window = 3)"},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Frequency Increment Test — fit","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates length-\\(m\\) numeric vector dates. ... Currently used. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era. level length-one numeric vector giving confidence level. roll logical scalar: time series subsetted look episodes selection? window odd integer giving size rolling window. used roll TRUE.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Frequency Increment Test — fit","text":"IncrementTest object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Frequency Increment Test — fit","text":"Frequency Increment Test (FIT) rejects neutrality distribution normalized variant frequency increments exhibits mean deviates significantly zero. roll TRUE, time series subsetted according window see episodes selection can identified among variables might show overall selection.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Frequency Increment Test — fit","text":"Feder, . F., Kryazhimskiy, S. & Plotkin, J. B. (2014). Identifying Signatures Selection Genetic Time Series. Genetics, 196(2): 509-522. doi:10.1534/genetics.113.158220 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Frequency Increment Test — fit","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Frequency Increment Test — fit","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Group by phase ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Frequency Increment Test freq <- fit(counts, dates, calendar = NULL) ## Plot time vs abundance plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\") ## Plot time vs abundance and highlight selection freq <- fit(counts, dates, calendar = NULL, roll = TRUE, window = 5) plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/kairos-deprecated.html","id":null,"dir":"Reference","previous_headings":"","what":"Deprecated Functions in kairos — kairos-deprecated","title":"Deprecated Functions in kairos — kairos-deprecated","text":"functions still work removed (defunct) next version.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":null,"dir":"Reference","previous_headings":"","what":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"toolkit absolute relative dating analysis chronological patterns. package includes functions chronological modeling dating archaeological assemblages count data. provides methods matrix seriation. also allows compute time point estimates density estimates occupation duration archaeological site.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":"package-options","dir":"Reference","previous_headings":"","what":"Package options","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"kairos uses following options() configure behavior: kairos.progress: logical scalar. progress bars displayed?","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"Full list authors contributors (alphabetic order) Package maintainer Nicolas Frerebeaunicolas.frerebeau@u-bordeaux-montaigne.fr Archéosciences Bordeaux (UMR 6034) Maison de l'Archéologie Université Bordeaux Montaigne F-33607 Pessac cedex France","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Ceramic Date — mcd","title":"Mean Ceramic Date — mcd","text":"Estimates Mean Ceramic Date assemblage.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Ceramic Date — mcd","text":"","code":"mcd(object, dates, ...) # S4 method for numeric,numeric mcd(object, dates, calendar = CE()) # S4 method for data.frame,numeric mcd(object, dates, calendar = CE()) # S4 method for matrix,numeric mcd(object, dates, calendar = CE())"},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Ceramic Date — mcd","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates length-\\(p\\) numeric vector dates expressed years. ... Currently used. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Mean Ceramic Date — mcd","text":"MeanDate object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Mean Ceramic Date — mcd","text":"Mean Ceramic Date (MCD) point estimate occupation archaeological site (South 1977). MCD estimated weighted mean date midpoints ceramic types (based absolute dates known production interval) found given assemblage. weights relative frequencies respective types assemblage. bootstrapping procedure used estimate confidence interval given MCD. assemblage, large number new bootstrap replicates created, sample size, resampling original assemblage replacement. MCDs calculated replicates upper lower boundaries confidence interval associated MCD returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mean Ceramic Date — mcd","text":"South, S. . (1977). Method Theory Historical Archaeology. New York: Academic Press.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Mean Ceramic Date — mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Ceramic Date — mcd","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Set the start and end dates for each ceramic type dates <- list( LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050), GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150), RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350), PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225), SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300), PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450) ) ## Calculate date midpoints mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1)) ## Calculate MCD (mc_dates <- mcd(zuni[100:125, ], dates = mid)) #> 26 x 18 x 1 time series observed between 276230.3 and 459613.1 r.d. ## Get MCD in years CE time(mc_dates, calendar = CE()) #> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011 #> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799 #> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176 #> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757 ## Plot plot(mc_dates) ## Bootstrap resampling boot <- bootstrap(mc_dates, n = 30) head(boot) #> original mean bias error #> LZ0789 757.2917 NaN NaN NA #> LZ0783 796.6667 877.3516 80.684918 123.04823 #> LZ0782 797.5000 865.2036 67.703582 114.79835 #> LZ0778 952.5862 992.4772 39.890967 98.04027 #> LZ0777 996.2963 987.9246 -8.371707 74.09417 #> LZ0776 1016.0714 1041.8303 25.758917 67.90664 ## Jackknife resampling jack <- jackknife(mc_dates) head(jack) #> original mean bias error #> LZ0789 757.2917 768.2870 186.921296 207.5535 #> LZ0783 796.6667 806.9974 175.621693 228.0861 #> LZ0782 797.5000 804.1715 113.415558 169.0563 #> LZ0778 952.5862 954.5205 32.882529 138.6064 #> LZ0777 996.2963 996.6640 6.251785 111.0144 #> LZ0776 1016.0714 1017.1652 18.594831 72.6602 ## Simulation sim <- simulate(mc_dates, nsim = 30) plot(sim, interval = \"range\", pch = 16)"},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract Model Results — model","title":"Extract Model Results — model","text":"coef() extracts model coefficients (see stats::coef()). fitted() extracts model fitted values (see stats::fitted()). residuals() extracts model residuals (see stats::residuals()). sigma() extracts residual standard deviation (see stats::sigma()). terms() extracts model terms (see stats::terms()).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract Model Results — model","text":"","code":"# S4 method for EventDate coef(object, calendar = NULL, ...) # S4 method for EventDate fitted(object, calendar = NULL, ...) # S4 method for EventDate residuals(object, calendar = NULL, ...) # S4 method for EventDate sigma(object, calendar = NULL, ...) # S4 method for EventDate terms(x, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract Model Results — model","text":"calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned. ... Currently used. x, object EventDate object.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract Model Results — model","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract Model Results — model","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":null,"dir":"Reference","previous_headings":"","what":"Get or Set Parts of an Object — mutators","title":"Get or Set Parts of an Object — mutators","text":"Getters setters retrieve set parts object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get or Set Parts of an Object — mutators","text":"","code":"# S4 method for AoristicSum weights(object, ...) # S4 method for CountApportion weights(object, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get or Set Parts of an Object — mutators","text":"object object get set element(s). ... Currently used.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get or Set Parts of an Object — mutators","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":null,"dir":"Reference","previous_headings":"","what":"Rearranges a Data Matrix — permute","title":"Rearranges a Data Matrix — permute","text":"permute() rearranges data matrix according permutation order. get_order() returns seriation order rows /columns.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rearranges a Data Matrix — permute","text":"","code":"permute(object, order, ...) get_order(x, ...) # S4 method for data.frame,PermutationOrder permute(object, order) # S4 method for matrix,PermutationOrder permute(object, order) # S4 method for PermutationOrder get_order(x, margin = c(1, 2))"},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rearranges a Data Matrix — permute","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. x, order PermutationOrder object giving permutation order rows columns. margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rearranges a Data Matrix — permute","text":"permute() returns permuted matrix permuted data.frame (object).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rearranges a Data Matrix — permute","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Rearranges a Data Matrix — permute","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Aoristic Analysis — plot_aoristic","title":"Plot Aoristic Analysis — plot_aoristic","text":"Plot Aoristic Analysis","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Aoristic Analysis — plot_aoristic","text":"","code":"# S4 method for AoristicSum,missing plot( x, calendar = getOption(\"kairos.calendar\"), type = c(\"bar\"), flip = FALSE, ncol = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... ) # S4 method for AoristicSum image(x, calendar = getOption(\"kairos.calendar\"), ...) # S4 method for RateOfChange,missing plot( x, calendar = getOption(\"kairos.calendar\"), level = 0.95, flip = FALSE, ncol = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Aoristic Analysis — plot_aoristic","text":"x AoristicSum object. calendar TimeScale object specifying target calendar (see calendar()). type character string specifying whether bar density plotted? must one \"bar\" \"density\". unambiguous substring can given. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? panel.first expression evaluated plot axes set plotting takes place. can useful drawing background grids. panel.last expression evaluated plotting taken place axes, title box added. ... parameters passed panel (e.g. graphical parameters). level length-one numeric vector giving confidence level.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Aoristic Analysis — plot_aoristic","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Aoristic Analysis — plot_aoristic","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Aoristic Analysis — plot_aoristic","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Event Plot — plot_event","title":"Event Plot — plot_event","text":"Produces activity tempo plot.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Event Plot — plot_event","text":"","code":"# S4 method for EventDate,missing plot( x, type = c(\"activity\", \"tempo\"), event = FALSE, calendar = getOption(\"kairos.calendar\"), select = 1, n = 500, eps = 1e-09, col.accumulation = \"black\", col.event = \"red\", flip = FALSE, ncol = NULL, xlab = NULL, ylab = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Event Plot — plot_event","text":"x EventDate object. type character string indicating type plot. must one \"activity\" (default) \"tempo\" (see details). unambiguous substring can given. event logical scalar: distribution event date displayed? used type \"activity\". calendar TimeScale object specifying target calendar (see calendar()). select numeric character vector giving selection assemblage drawn. n length-one non-negative numeric vector giving desired length vector quantiles density computation. eps length-one numeric value giving cutoff values removed. col.accumulation color specification accumulation density curve. col.event color specification event density curve. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. xlab, ylab character vector giving x y axis labels. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? ... parameters passed panel (e.g. graphical parameters).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Event Plot — plot_event","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"event-and-acccumulation-dates","dir":"Reference","previous_headings":"","what":"Event and Acccumulation Dates","title":"Event Plot — plot_event","text":"plot() displays probability estimate density curves archaeological assemblage dates (event accumulation dates; Bellanger Husi 2012). event date plotted line, accumulation date shown grey filled area. accumulation date can displayed tempo plot (Dye 2016) activity plot (Philippe Vibet 2020): tempo tempo plot estimates cumulative occurrence archaeological events, slope plot directly reflects pace change. activity activity plot displays first derivative tempo plot.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Event Plot — plot_event","text":"Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Dye, T. S. (2016). Long-Term Rhythms Development Hawaiian Social Stratification. Journal Archaeological Science, 71, 1-9. doi:10.1016/j.jas.2016.05.006 . Philippe, . & Vibet, M.-. (2020). Analysis Archaeological Phases Using R Package ArchaeoPhases. Journal Statistical Software, Code Snippets, 93(1), 1-25. doi:10.18637/jss.v093.c01 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Event Plot — plot_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Event Plot — plot_event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Detection of Selective Processes — plot_fit","title":"Detection of Selective Processes — plot_fit","text":"Produces abundance vs time diagram.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detection of Selective Processes — plot_fit","text":"","code":"# S4 method for IncrementTest,missing plot( x, calendar = getOption(\"kairos.calendar\"), col.neutral = \"#004488\", col.selection = \"#BB5566\", col.roll = \"grey\", flip = FALSE, ncol = NULL, xlab = NULL, ylab = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detection of Selective Processes — plot_fit","text":"x IncrementTest object plotted. calendar TimeScale object specifying target calendar (see calendar()). col.neutral, col.selection, col.roll vector colors. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. xlab, ylab character vector giving x y axis labels. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? ... parameters passed panel (e.g. graphical parameters).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detection of Selective Processes — plot_fit","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Detection of Selective Processes — plot_fit","text":"Results frequency increment test can displayed abundance vs time diagram aid detection quantification selective processes archaeological record. roll TRUE, time series subsetted according window see episodes selection can identified among decoration types might show overall selection. , shading highlights data points fit() identifies selection.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Detection of Selective Processes — plot_fit","text":"Displaying FIT results abundance vs time diagram adapted Ben Marwick's original idea.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Detection of Selective Processes — plot_fit","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detection of Selective Processes — plot_fit","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Group by phase ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Frequency Increment Test freq <- fit(counts, dates, calendar = NULL) ## Plot time vs abundance plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\") ## Plot time vs abundance and highlight selection freq <- fit(counts, dates, calendar = NULL, roll = TRUE, window = 5) plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"MCD Plot — plot_mcd","title":"MCD Plot — plot_mcd","text":"MCD Plot","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"MCD Plot — plot_mcd","text":"","code":"# S4 method for MeanDate,missing plot( x, calendar = getOption(\"kairos.calendar\"), decreasing = TRUE, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... ) # S4 method for SimulationMeanDate,missing plot( x, calendar = getOption(\"kairos.calendar\"), interval = \"student\", level = 0.8, decreasing = TRUE, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"MCD Plot — plot_mcd","text":"x MeanDate object. calendar TimeScale object specifying target calendar (see calendar()). decreasing logical scalar: sort increasing decreasing? main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x, y z axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? panel.first expression evaluated plot axes set plotting takes place. can useful drawing background grids. panel.last expression evaluated plotting taken place axes, title box added. ... graphical parameters. interval character string giving type confidence interval returned. must one \"student\" (default), \"normal\", \"percentiles\" \"range\" (min-max). unambiguous substring can given. level length-one numeric vector giving confidence level. used interval \"range\".","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"MCD Plot — plot_mcd","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"MCD Plot — plot_mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"MCD Plot — plot_mcd","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Set the start and end dates for each ceramic type dates <- list( LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050), GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150), RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350), PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225), SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300), PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450) ) ## Calculate date midpoints mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1)) ## Calculate MCD (mc_dates <- mcd(zuni[100:125, ], dates = mid)) #> 26 x 18 x 1 time series observed between 276230.3 and 459613.1 r.d. ## Get MCD in years CE time(mc_dates, calendar = CE()) #> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011 #> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799 #> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176 #> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757 ## Plot plot(mc_dates) ## Bootstrap resampling boot <- bootstrap(mc_dates, n = 30) head(boot) #> original mean bias error #> LZ0789 757.2917 NaN NaN NA #> LZ0783 796.6667 859.4699 62.80322 123.19509 #> LZ0782 797.5000 842.4981 44.99815 97.15529 #> LZ0778 952.5862 975.3842 22.79803 113.94568 #> LZ0777 996.2963 1017.4194 21.12312 80.70935 #> LZ0776 1016.0714 1052.2386 36.16715 83.04551 ## Jackknife resampling jack <- jackknife(mc_dates) head(jack) #> original mean bias error #> LZ0789 757.2917 768.2870 186.921296 207.5535 #> LZ0783 796.6667 806.9974 175.621693 228.0861 #> LZ0782 797.5000 804.1715 113.415558 169.0563 #> LZ0778 952.5862 954.5205 32.882529 138.6064 #> LZ0777 996.2963 996.6640 6.251785 111.0144 #> LZ0776 1016.0714 1017.1652 18.594831 72.6602 ## Simulation sim <- simulate(mc_dates, nsim = 30) plot(sim, interval = \"range\", pch = 16)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":null,"dir":"Reference","previous_headings":"","what":"Abundance vs Time Plot — plot_time","title":"Abundance vs Time Plot — plot_time","text":"Produces abundance vs time diagram.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Abundance vs Time Plot — plot_time","text":"","code":"plot_time(object, dates, ...) # S4 method for data.frame,numeric plot_time(object, dates, calendar = getOption(\"kairos.calendar\"), ...) # S4 method for matrix,numeric plot_time(object, dates, calendar = getOption(\"kairos.calendar\"), ...)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Abundance vs Time Plot — plot_time","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates numeric vector dates. ... parameters passed aion::plot(). calendar TimeScale object specifying target calendar (see calendar()).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Abundance vs Time Plot — plot_time","text":"plot_time() called side-effects: results graphic displayed (invisibly returns object).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Abundance vs Time Plot — plot_time","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Abundance vs Time Plot — plot_time","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Coerce the merzbach dataset to a count matrix ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Set dates ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Plot abundance vs time plot_time(counts, dates, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict Event and Accumulation Dates — predict_event","title":"Predict Event and Accumulation Dates — predict_event","text":"Estimates event accumulation dates assemblage.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict Event and Accumulation Dates — predict_event","text":"","code":"predict_event(object, data, ...) predict_accumulation(object, data, ...) # S4 method for EventDate,missing predict_event(object, margin = 1, level = 0.95, calendar = NULL) # S4 method for EventDate,matrix predict_event(object, data, margin = 1, level = 0.95, calendar = NULL) # S4 method for EventDate,missing predict_accumulation(object, calendar = NULL) # S4 method for EventDate,matrix predict_accumulation(object, data, level = 0.95, calendar = NULL)"},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict Event and Accumulation Dates — predict_event","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). data numeric matrix data.frame count data (absolute frequencies) predict event accumulation dates. ... arguments passed internal methods. margin numeric vector giving subscripts prediction applied : 1 indicates rows, 2 indicates columns. level length-one numeric vector giving confidence level. calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Predict Event and Accumulation Dates — predict_event","text":"predict_event() returns data.frame. predict_accumulation() returns data.frame.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Predict Event and Accumulation Dates — predict_event","text":"Bellanger, L. & Husi, P. (2013). Mesurer et modéliser le temps inscrit dans la matière à partir d'une source matérielle : la céramique médiévale. Mesure et Histoire Médiévale. Histoire ancienne et médiévale. Paris: Publication de la Sorbonne, p. 119-134. Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Bellanger, L., Tomassone, R. & Husi, P. (2008). Statistical Approach Dating Archaeological Contexts. Journal Data Science, 6, 135-154. Bellanger, L., Husi, P. & Tomassone, R. (2006). Une approche statistique pour la datation de contextes archéologiques. Revue de Statistique Appliquée, 54(2), 65-81. Bellanger, L., Husi, P. & Tomassone, R. (2006). Statistical Aspects Pottery Quantification Dating Archaeological Contexts. Archaeometry, 48(1), 169-183. doi:10.1111/j.1475-4754.2006.00249.x .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Predict Event and Accumulation Dates — predict_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Predict Event and Accumulation Dates — predict_event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. aion AD, BC, BCE, BP, CE, b2k, calendar, start, start, time, year_axis arkhe bootstrap, jackknife, remove_NA, remove_zero, replace_NA, replace_zero","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Resample Event Dates — resample_event","title":"Resample Event Dates — resample_event","text":"bootstrap() generate bootstrap estimations event. jackknife() generate jackknife estimations event.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Resample Event Dates — resample_event","text":"","code":"# S4 method for EventDate jackknife(object, level = 0.95, progress = getOption(\"kairos.progress\"), ...) # S4 method for EventDate bootstrap( object, level = 0.95, probs = c(0.05, 0.95), n = 1000, progress = getOption(\"kairos.progress\"), ... )"},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Resample Event Dates — resample_event","text":"object EventDate object (typically returned event()). level length-one numeric vector giving confidence level. progress logical scalar: progress bar displayed? ... arguments passed internal methods. probs numeric vector probabilities values \\([0,1]\\). n non-negative integer specifying number bootstrap replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Resample Event Dates — resample_event","text":"data.frame.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Resample Event Dates — resample_event","text":"jackknife() used, one type/fabric removed time statistics recalculated. way, one can assess whether certain type/fabric substantial influence date estimate. three columns data.frame returned, giving results resampling procedure (jackknifing fabrics) assemblage (rows) following columns: mean jackknife mean (event date). bias jackknife estimate bias. error standard error predicted means. bootstrap() used, large number new bootstrap assemblages created, sample size, resampling original assemblage replacement. , examination bootstrap statistics makes possible pinpoint assemblages require investigation. five columns data.frame returned, giving bootstrap distribution statistics replicated assemblage (rows) following columns: min Minimum value. mean Mean value (event date). max Maximum value. Q5 Sample quantile 0.05 probability. Q95 Sample quantile 0.95 probability.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Resample Event Dates — resample_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"Resample Mean Ceramic Dates — resample_mcd","title":"Resample Mean Ceramic Dates — resample_mcd","text":"bootstrap() generate bootstrap estimations MCD. jackknife() generate jackknife estimations MCD.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Resample Mean Ceramic Dates — resample_mcd","text":"","code":"# S4 method for MeanDate bootstrap(object, n = 1000, f = NULL, calendar = getOption(\"kairos.calendar\")) # S4 method for MeanDate jackknife(object, f = NULL, calendar = getOption(\"kairos.calendar\")) # S4 method for MeanDate simulate(object, nsim = 1000)"},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Resample Mean Ceramic Dates — resample_mcd","text":"object MeanDate object (typically returned mcd()). n non-negative integer specifying number bootstrap replications. f function takes single numeric vector (result resampling procedure) argument. calendar TimeScale object specifying target calendar (see calendar()). nsim non-negative integer specifying number simulations.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Resample Mean Ceramic Dates — resample_mcd","text":"f NULL, bootstrap() jackknife() return data.frame following elements (else, returns result f applied n resampled values) : original observed value. mean bootstrap/jackknife estimate mean. bias bootstrap/jackknife estimate bias. error boostrap/jackknife estimate standard erro.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Resample Mean Ceramic Dates — resample_mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":null,"dir":"Reference","previous_headings":"","what":"Rate of Change — roc","title":"Rate of Change — roc","text":"Computes rate change aoristic analysis.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rate of Change — roc","text":"","code":"roc(object, ...) # S4 method for AoristicSum roc(object, n = 100)"},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rate of Change — roc","text":"object AoristicSum object. ... Currently used. n non-negative integer giving number replications (see details).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rate of Change — roc","text":"RateOfChange object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Rate of Change — roc","text":"Baxter, M. J. & Cool, H. E. M. (2016). Reinventing Wheel? Modelling Temporal Uncertainty Applications Brooch Distributions Roman Britain. Journal Archaeological Science, 66: 120-27. doi:10.1016/j.jas.2015.12.007 . Crema, E. R. (2012). Modelling Temporal Uncertainty Archaeological Analysis. Journal Archaeological Method Theory, 19(3): 440-61. doi:10.1007/s10816-011-9122-3 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rate of Change — roc","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Rate of Change — roc","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":null,"dir":"Reference","previous_headings":"","what":"Correspondence Analysis-Based Seriation — seriate_average","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Correspondence Analysis-Based Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"","code":"seriate_average(object, ...) # S4 method for data.frame seriate_average(object, margin = c(1, 2), axes = 1, ...) # S4 method for matrix seriate_average(object, margin = c(1, 2), axes = 1, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... arguments passed internal methods. margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns, c(2, 1) indicates columns rows. axes integer vector giving subscripts CA axes used.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"AveragePermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Correspondence analysis (CA) effective method seriation archaeological assemblages. order rows columns given coordinates along one dimension CA space, assumed account temporal variation. direction temporal change within correspondence analysis space arbitrary: additional information needed determine actual order time.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Ihm, P. (2005). Contribution History Seriation Archaeology. C. Weihs & W. Gaul (Eds.), Classification: Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":null,"dir":"Reference","previous_headings":"","what":"Reciprocal Ranking Seriation — seriate_rank","title":"Reciprocal Ranking Seriation — seriate_rank","text":"Reciprocal Ranking Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reciprocal Ranking Seriation — seriate_rank","text":"","code":"seriate_rank(object, ...) # S4 method for data.frame seriate_rank(object, EPPM = FALSE, margin = c(1, 2), stop = 100) # S4 method for matrix seriate_rank(object, EPPM = FALSE, margin = c(1, 2), stop = 100)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reciprocal Ranking Seriation — seriate_rank","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. EPPM logical scalar: seriation computed EPPM instead raw data? margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns, c(2, 1) indicates columns rows. stop integer giving stopping rule (.e. maximum number iterations) avoid infinite loop.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reciprocal Ranking Seriation — seriate_rank","text":"RankPermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Reciprocal Ranking Seriation — seriate_rank","text":"procedure iteratively rearrange rows /columns according weighted rank data matrix convergence. Note procedure enter infinite loop. convergence reached maximum number iterations, stops warning.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Reciprocal Ranking Seriation — seriate_rank","text":"Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation graphique pour tableaux de comptages. Revue archéologique de Picardie, 3(1), 39-56. doi:10.3406/pica.2004.2396 . Dunnell, R. C. (1970). Seriation Method Evaluation. American Antiquity, 35(03), 305-319. doi:10.2307/278341 . Ihm, P. (2005). Contribution History Seriation Archaeology. C. Weihs & W. Gaul (Eds.), Classification: Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reciprocal Ranking Seriation — seriate_rank","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reciprocal Ranking Seriation — seriate_rank","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":null,"dir":"Reference","previous_headings":"","what":"Refine CA-based Seriation — seriate_refine","title":"Refine CA-based Seriation — seriate_refine","text":"Refine CA-based Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Refine CA-based Seriation — seriate_refine","text":"","code":"seriate_refine(object, ...) # S4 method for AveragePermutationOrder seriate_refine(object, cutoff, margin = 1, axes = 1, n = 30, ...) # S4 method for BootstrapCA seriate_refine(object, cutoff, margin = 1, axes = 1, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Refine CA-based Seriation — seriate_refine","text":"object PermutationOrder object (typically returned seriate_average()). ... arguments passed internal methods. cutoff function takes numeric vector argument returns single numeric value (see ). margin length-one numeric vector giving subscripts refinement applied : 1 indicates rows, 2 indicates columns. axes integer vector giving subscripts CA axes used. n non-negative integer giving number bootstrap replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Refine CA-based Seriation — seriate_refine","text":"RefinePermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Refine CA-based Seriation — seriate_refine","text":"seriate_refine() allows identify samples subject sampling error samples underlying structural relationships might influencing ordering along CA space. relies partial bootstrap approach CA-based seriation sample replicated n times. maximum dimension length convex hull around sample point cloud allows remove samples given cutoff value. According Peebles Schachner (2012), \"[] point removal procedure [results ] reduced dataset position individuals within CA highly stable produces ordering consistent assumptions frequency seriation.\"","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Refine CA-based Seriation — seriate_refine","text":"Peeples, M. ., & Schachner, G. (2012). Refining correspondence analysis-based ceramic seriation regional data sets. Journal Archaeological Science, 39(8), 2818-2827. doi:10.1016/j.jas.2012.04.040 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Refine CA-based Seriation — seriate_refine","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":null,"dir":"Reference","previous_headings":"","what":"Sampling Times — series","title":"Sampling Times — series","text":"Get times time series sampled.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Sampling Times — series","text":"","code":"# S4 method for EventDate time(x, calendar = NULL)"},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Sampling Times — series","text":"x R object. calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Sampling Times — series","text":"numeric vector.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Sampling Times — series","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract or Replace Parts of an Object — subset","title":"Extract or Replace Parts of an Object — subset","text":"Operators acting objects extract replace parts.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract or Replace Parts of an Object — subset","text":"","code":"# S4 method for MeanDate [(x, i, j, k, drop = FALSE) # S4 method for IncrementTest [(x, i, j, k, drop = FALSE) # S4 method for PermutationOrder,ANY,missing [[(x, i)"},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract or Replace Parts of an Object — subset","text":"x object extract element(s) replace element(s). , j, k Indices specifying elements extract replace. drop logical scalar: result coerced lowest possible dimension? works extracting elements, replacement.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract or Replace Parts of an Object — subset","text":"subsetted object.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract or Replace Parts of an Object — subset","text":"N. Frerebeau","code":""}] +[{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"definition","dir":"Articles","previous_headings":"","what":"Definition","title":"Event Date Model","text":"Event accumulation dates density estimates occupation duration archaeological site (L. Bellanger, Husi, Tomassone 2006; L. Bellanger, Tomassone, Husi 2008; Lise Bellanger Husi 2012). event date estimation terminus post-quem archaeological assemblage. accumulation date represents “chronological profile” assemblage. According Lise Bellanger Husi (2012), accumulation date can interpreted “best […] formation process reflecting duration succession events scale archaeological time, worst, imprecise dating due contamination context residual intrusive material.” words, accumulation dates estimate occurrence archaeological events rhythms long term.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"event-date","dir":"Articles","previous_headings":"Definition","what":"Event Date","title":"Event Date Model","text":"Event dates estimated fitting Gaussian multiple linear regression model factors resulting correspondence analysis - somewhat similar idea introduced Poblome Groenen (2003). model results known dates selection reliable contexts allows predict event dates remaining assemblages. First, correspondence analysis (CA) carried summarize information count matrix \\(X\\). correspondence analysis \\(X\\) provides coordinates \\(m\\) rows along \\(q\\) factorial components, denoted \\(f_{ik} ~\\forall \\\\left[ 1,m \\right], k \\\\left[ 1,q \\right]\\). , assuming \\(n\\) assemblages reliably dated another source, Gaussian multiple linear regression model fitted factorial components \\(n\\) dated assemblages: \\[ t^E_i = \\beta_{0} + \\sum_{k = 1}^{q} \\beta_{k} f_{ik} + \\epsilon_i ~\\forall \\[1,n] \\] \\(t^E_i\\) known date point estimate \\(\\)th assemblage, \\(\\beta_k\\) regression coefficients \\(\\epsilon_i\\) normally, identically independently distributed random variables, \\(\\epsilon_i \\sim \\mathcal{N}(0,\\sigma^2)\\). \\(n\\) equations stacked together written matrix notation \\[ t^E = F \\beta + \\epsilon \\] \\(\\epsilon \\sim \\mathcal{N}_{n}(0,\\sigma^2 I_{n})\\), \\(\\beta = \\left[ \\beta_0 \\cdots \\beta_q \\right]' \\\\mathbb{R}^{q+1}\\) \\[ F = \\begin{bmatrix} 1 & f_{11} & \\cdots & f_{1q} \\\\ 1 & f_{21} & \\cdots & f_{2q} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ 1 & f_{n1} & \\cdots & f_{nq} \\end{bmatrix} \\] Assuming \\(F'F\\) nonsingular, ordinary least squares estimator unknown parameter vector \\(\\beta\\) : \\[ \\widehat{\\beta} = \\left( F'F \\right)^{-1} F' t^E \\] Finally, given vector CA coordinates \\(f_i\\), predicted event date assemblage \\(t^E_i\\) : \\[ \\widehat{t^E_i} = f_i \\hat{\\beta} \\] endpoints \\(100(1 − \\alpha)\\)% associated prediction confidence interval given : \\[ \\widehat{t^E_i} \\pm t_{\\alpha/2,n-q-1} \\sqrt{\\widehat{V}} \\] \\(\\widehat{V_i}\\) estimator variance prediction error: \\[ \\widehat{V_i} = \\widehat{\\sigma}^2 \\left( f_i^T \\left( F'F \\right)^{-1} f_i + 1 \\right) \\] \\(\\widehat{\\sigma} = \\frac{\\sum_{=1}^{n} \\left( t_i - \\widehat{t^E_i} \\right)^2}{n - q - 1}\\). probability density event date \\(t^E_i\\) can described normal distribution: \\[ t^E_i \\sim \\mathcal{N}(\\widehat{t^E_i},\\widehat{V_i}) \\]","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"accumulation-date","dir":"Articles","previous_headings":"Definition","what":"Accumulation Date","title":"Event Date Model","text":"row (assemblages) columns (types) CA coordinates linked together -called transition formulae, event dates type \\(t^E_j\\) can predicted following procedure . , accumulation date \\(t^A_i\\) defined weighted mean event date ceramic types found given assemblage. weights conditional frequencies respective types assemblage (akin MCD). accumulation date estimated : \\[ \\widehat{t^A_i} = \\sum_{j = 1}^{p} \\widehat{t^E_j} \\times \\frac{x_{ij}}{x_{\\cdot}} \\] probability density accumulation date \\(t^A_i\\) can described Gaussian mixture: \\[ t^A_i \\sim \\frac{x_{ij}}{x_{\\cdot}} \\mathcal{N}(\\widehat{t^E_j},\\widehat{V_j}^2) \\] Interestingly, integral accumulation date offers estimates cumulative occurrence archaeological events, close enough definition tempo plot introduced Dye (2016).","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"limitation","dir":"Articles","previous_headings":"","what":"Limitation","title":"Event Date Model","text":"Event accumulation dates estimation relies conditions assumptions matrix seriation problem. Dunnell (1970) summarizes conditions assumptions follows. homogeneity conditions state groups included seriation must: comparable duration. Belong cultural tradition. Come local area. mathematical assumptions state distribution historical temporal class: continuous time. Exhibits form unimodal curve. Theses assumptions create distributional model ordering accomplished arranging matrix class distributions approximate required pattern. resulting order inferred chronological. Predicted dates interpreted care: dates highly dependent range known dates fit regression.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/event.html","id":"usage","dir":"Articles","previous_headings":"","what":"Usage","title":"Event Date Model","text":"package provides implementation chronological modeling method developed Lise Bellanger Husi (2012). method slightly modified allows construction different probability density curves archaeological assemblage dates (event, activity tempo). Resampling methods can used check stability resulting model. jackknife() used, one type/fabric removed time statistics recalculated. way, one can assess whether certain type/fabric substantial influence date estimate. bootstrap() used, large number new bootstrap assemblages created, sample size, resampling original assemblage replacement. , examination bootstrap statistics makes possible pinpoint assemblages require investigation.","code":"## Bellanger et al. did not publish the data supporting their demonstration: ## no replication of their results is possible. ## Here is an example using the Zuni dataset from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) ## The names of the vector entries must match the names of the assemblages zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, dates = zuni_dates, rank = 10) ## Model summary ## (results are expressed in rata die) summary(model) #> #> Call: #> stats::lm(formula = date ~ ., data = contexts) #> #> Residuals: #> LZ0852 LZ0610 LZ0578 LZ0569 LZ0563 LZ0329 LZ0322 LZ0279 #> -479.32 351.48 1283.51 163.57 -1626.71 -290.90 950.04 -1427.33 #> LZ0227 LZ0067 LZ0066 LZ0005Q CS16 CS144 LZ1209 #> -280.59 -50.24 266.02 45.83 -105.47 1016.24 183.86 #> attr(,\"class\") #> [1] \"RataDie\" #> attr(,\"class\")attr(,\"package\") #> [1] \"aion\" #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 425015.4 1064.9 399.095 2.36e-10 *** #> F1 -57813.4 602.6 -95.938 7.08e-08 *** #> F2 9387.7 615.2 15.260 0.000108 *** #> F3 -2047.2 789.1 -2.594 0.060411 . #> F4 3928.9 2127.1 1.847 0.138452 #> F5 -1146.2 1442.3 -0.795 0.471276 #> F6 995.1 485.4 2.050 0.109663 #> F7 1667.0 1906.7 0.874 0.431304 #> F8 4126.0 1264.9 3.262 0.031027 * #> F9 -1889.1 1079.6 -1.750 0.155039 #> F10 -144.8 967.9 -0.150 0.888300 #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 1494 on 4 degrees of freedom #> Multiple R-squared: 0.9997, Adjusted R-squared: 0.999 #> F-statistic: 1433 on 10 and 4 DF, p-value: 1.168e-06 ## Extract model coefficients ## (convert results to Gregorian years) coef(model, calendar = CE()) #> (Intercept) F1 F2 F3 F4 F5 #> 1163.6512430 -158.2887134 25.7005062 -5.6059619 10.7559523 -3.1402928 #> F6 F7 F8 F9 F10 #> 2.7236281 4.5617156 11.2951729 -5.1728421 -0.3984238 ## Extract residual standard deviation ## (convert results to Gregorian years) sigma(model, calendar = CE()) #> [1] 4.088072 ## Extract model residuals ## (convert results to Gregorian years) resid(model, calendar = CE()) #> [1] -1.3132066 0.9602214 3.5123344 0.4453877 -4.4554781 -0.7975492 #> [7] 2.6001038 -3.9104984 -0.7693659 -0.1399926 0.7260925 0.1228117 #> [13] -0.2908912 2.7814906 0.5009809 ## Extract model fitted values ## (convert results to Gregorian years) fitted(model, calendar = CE()) #> [1] 1217.3105 1073.0370 1176.4849 1096.5531 1210.4540 1076.7948 1106.3999 #> [8] 1122.9078 1104.7666 863.1376 1110.2712 858.8744 1328.2882 1259.2185 #> [15] 1250.4963 ## Estimate event dates ## (results are expressed in rata die) eve <- predict_event(model, margin = 1, level = 0.95) head(eve) #> date lower upper error #> LZ1105 426454.0 420445.5 432462.4 2164.087 #> LZ1103 417145.8 414689.9 419601.7 884.558 #> LZ1100 421968.1 416394.9 427541.4 2007.317 #> LZ1099 400974.7 396642.1 405307.4 1560.503 #> LZ1097 397176.5 393404.6 400948.3 1358.530 #> LZ1096 306371.0 300801.2 311940.7 2006.057 ## Activity plot plot(model, type = \"activity\", event = TRUE, select = 1:6) plot(model, type = \"activity\", event = TRUE, select = \"LZ1105\") ## Tempo plot plot(model, type = \"tempo\", select = \"LZ1105\") ## Check model variability ## (results are expressed in rata die) ## Warning: this may take a few seconds ## Jackknife fabrics jack <- jackknife(model) head(jack) #> date lower upper error bias #> LZ1105 155634807 155628798 155640815 2164.087 2638541997 #> LZ1103 152396320 152393864 152398776 884.558 2583645955 #> LZ1100 154171872 154166299 154177445 2007.317 2613748366 #> LZ1099 146238877 146234544 146243210 1560.503 2479244339 #> LZ1097 145631868 145628096 145635640 1358.530 2468989755 #> LZ1096 112226452 112220882 112232021 2006.057 1902641373 ## Bootstrap of assemblages boot <- bootstrap(model, n = 30) head(boot) #> min mean max Q5 Q95 #> LZ1105 417002.6 425586.0 437067.8 417767.2 434008.4 #> LZ1103 392123.4 417791.0 430785.9 403609.7 429485.5 #> LZ1100 393313.2 424023.5 449473.7 401792.5 443724.7 #> LZ1099 396948.4 400796.1 405436.7 398289.1 404338.2 #> LZ1097 349923.6 392737.8 427551.0 358605.9 421320.1 #> LZ1096 264824.9 302095.2 337530.5 264824.9 332856.6"},{"path":[]},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Seriation","text":"matrix seriation problem archaeology based three conditions two assumptions, Dunnell (1970) summarizes follows. homogeneity conditions state groups included seriation must: comparable duration, Belong cultural tradition, Come local area. mathematical assumptions state distribution historical temporal class: continuous time, Exhibits form unimodal curve. Theses assumptions create distributional model ordering accomplished arranging matrix class distributions approximate required pattern. resulting order inferred chronological.","code":""},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"reciprocal-ranking","dir":"Articles","previous_headings":"","what":"Reciprocal ranking","title":"Seriation","text":"Reciprocal ranking iteratively rearrange rows /columns according weighted rank data matrix convergence (Ihm 2005). given incidence matrix \\(C\\): rows \\(C\\) rearranged increasing order : \\[ x_{} = \\sum_{j = 1}^{p} j \\frac{c_{ij}}{c_{\\cdot}} \\] columns \\(C\\) rearranged similar way: \\[ y_{j} = \\sum_{= 1}^{m} \\frac{c_{ij}}{c_{\\cdot j}} \\] two steps repeated convergence. Note procedure enter infinite loop. positive difference column mean percentage (french “écart positif au pourcentage moyen”, EPPM) represents deviation situation statistical independence (Desachy 2004). independence can interpreted absence relationships types chronological order assemblages, EPPM useful graphical tool explore significance relationship rows columns related seriation (Desachy 2004).","code":"## Build an incidence matrix with random data set.seed(12345) bin <- sample(c(TRUE, FALSE), 400, TRUE, c(0.6, 0.4)) incidence1 <- matrix(bin, nrow = 20) ## Get seriation order on rows and columns ## If no convergence is reached before the maximum number of iterations (100), ## it stops with a warning. (indices <- seriate_rank(incidence1, margin = c(1, 2), stop = 100)) #> #> Permutation order for matrix seriation: #> - Row order: 6 15 12 14 2 5 10 8 13 20 16 18 19 7 9 1 3 11 17 4... #> - Column order: 9 4 2 8 3 1 6 5 16 20 15 14 12 17 13 10 19 7 11 18... ## Permute matrix rows and columns incidence2 <- permute(incidence1, indices) ## Plot matrix tabula::plot_heatmap(incidence1, col = c(\"white\", \"black\")) tabula::plot_heatmap(incidence2, col = c(\"white\", \"black\")) ## Replicates Desachy 2004 data(\"compiegne\", package = \"folio\") ## Plot frequencies and EPPM values tabula::seriograph(compiegne) ## Get seriation order for columns on EPPM using the reciprocal ranking method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Permute columns compiegne_permuted <- permute(compiegne, indices) ## Plot frequencies and EPPM values tabula::seriograph(compiegne_permuted)"},{"path":[]},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"seriation","dir":"Articles","previous_headings":"Correspondence analysis","what":"Seriation","title":"Seriation","text":"Correspondence Analysis (CA) effective method seriation archaeological assemblages. order rows columns given coordinates along one dimension CA space, assumed account temporal variation. direction temporal change within correspondence analysis space arbitrary: additional information needed determine actual order time.","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni) ## Get row permutations from CA coordinates (zun_indices <- seriate_average(zuni, margin = c(1, 2))) #> #> Permutation order for matrix seriation: #> - Row order: 372 387 350 367 110 417 364 407 357 160 344 348 35... #> - Column order: 18 14 17 16 13 15 9 8 12 11 6 7 5 10 4 2 3 1... ## Plot CA results dimensio::biplot(zun_indices) ## Permute data matrix zuni_permuted <- permute(zuni, zun_indices) ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni_permuted)"},{"path":"https://packages.tesselle.org/kairos/articles/seriation.html","id":"refining","dir":"Articles","previous_headings":"Correspondence analysis","what":"Refining","title":"Seriation","text":"Peeples Schachner (2012) propose procedure identify samples subject sampling error samples underlying structural relationships might influencing ordering along CA space. relies partial bootstrap approach CA-based seriation sample replicated n times. maximum dimension length convex hull around sample point cloud allows remove samples given cutoff value. According Peeples Schachner (2012), “[] point removal procedure [results ] reduced dataset position individuals within CA highly stable produces ordering consistent assumptions frequency seriation.”","code":"## Partial bootstrap CA ## Warning: this may take a few seconds! zuni_boot <- dimensio::bootstrap(zun_indices, n = 30) ## Bootstrap CA results for the rows ## (add convex hull) zuni_boot |> dimensio::viz_rows(col = \"lightgrey\", pch = 16) |> dimensio::viz_hull(col = adjustcolor(\"#004488\", alpha = 0.5)) ## Bootstrap CA results for the columns zuni_boot |> dimensio::viz_columns(pch = 16) ## Replicates Peeples and Schachner 2012 results ## Samples with convex hull maximum dimension length greater than the cutoff ## value will be marked for removal. ## Define cutoff as one standard deviation above the mean fun <- function(x) { mean(x) + sd(x) } (zuni_refine <- seriate_refine(zun_indices, cutoff = fun, margin = 1)) #> #> Permutation order for matrix seriation: #> - Row order: 372 350 387 367 110 417 364 357 407 160 344 348 35... #> - Column order: 17 18 14 16 13 15 9 8 12 11 6 10 7 5 4 2 3 1... #> Partial bootstrap refinement: #> - Cutoff value: 1.77 #> - Rows to keep: 360 of 420 (86%) ## Plot CA results for the rows dimensio::viz_rows(zuni_refine, highlight = \"observation\", pch = c(16, 15)) ## Histogram of convex hull maximum dimension length hist(zuni_refine[[\"length\"]], xlab = \"Maximum length\", main = \"\") abline(v = zuni_refine[[\"cutoff\"]], col = \"red\") ## Permute data matrix zuni_permuted2 <- permute(zuni, zuni_refine) ## Ford diagram par(cex.axis = 0.7) tabula::plot_ford(zuni_permuted2)"},{"path":[]},{"path":[]},{"path":"https://packages.tesselle.org/kairos/index.html","id":"overview","dir":"","previous_headings":"","what":"Overview","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"convenient reproducible toolkit relative absolute dating analysis chronological patterns. package includes functions chronological modeling dating archaeological assemblages count data. provides methods matrix seriation. also allows compute time point estimates density estimates occupation duration archaeological site. kairos provides methods : Matrix seriation: seriate_rank() seriate_average() Mean ceramic date estimation (South 1977): mcd() Event accumulation date estimation (Bellanger Husi 2012): event() Aoristic analysis (Ratcliffe 2000): aoristic() Chronological apportioning (Roberts et al. 2012): apportion() tabula companion package kairos provides functions visualization analysis archaeological count data.","code":"To cite kairos in publications use: Frerebeau N (2023). _kairos: Analysis of Chronological Patterns from Archaeological Count Data_. Université Bordeaux Montaigne, Pessac, France. doi:10.5281/zenodo.5653896 , R package version 2.0.2, . A BibTeX entry for LaTeX users is @Manual{, author = {Nicolas Frerebeau}, title = {{kairos: Analysis of Chronological Patterns from Archaeological Count Data}}, year = {2023}, organization = {Université Bordeaux Montaigne}, address = {Pessac, France}, note = {R package version 2.0.2}, url = {https://packages.tesselle.org/kairos/}, doi = {10.5281/zenodo.5653896}, } This package is a part of the tesselle project ."},{"path":"https://packages.tesselle.org/kairos/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"can install released version kairos CRAN : development version GitHub :","code":"install.packages(\"kairos\") # install.packages(\"remotes\") remotes::install_github(\"tesselle/kairos\")"},{"path":"https://packages.tesselle.org/kairos/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"kairos v2.0 uses aion internal date representation. Look vignette(\"aion\") start. assumes keep data tidy: variable (type/taxa) must saved column observation (sample/case) must saved row.","code":"## Load packages library(kairos) ## Data from Husi 2022 data(\"loire\", package = \"folio\") keep <- c(\"Anjou\", \"Blésois\", \"Orléanais\", \"Haut-Poitou\", \"Touraine\") loire <- subset(loire, area %in% keep) ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (weights) by group ao <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) ## Plot plot(ao, col = \"grey\") ## Rate of change by group ro <- roc(ao, n = 30) plot(ro)"},{"path":"https://packages.tesselle.org/kairos/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Analysis of Chronological Patterns from Archaeological Count Data","text":"Please note kairos project released Contributor Code Conduct. contributing project, agree abide terms.","code":""},{"path":[]},{"path":[]},{"path":[]},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Aoristic Sum — AoristicSum-class","title":"Aoristic Sum — AoristicSum-class","text":"S4 class represent aoristic analysis results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Aoristic Sum — AoristicSum-class","text":"breaks RataDie vector giving date break time-blocks. weights numeric vector. groups character vector store group names (). p numeric array giving aorisitic probabilities.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Aoristic Sum — AoristicSum-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Aoristic Sum — AoristicSum-class","text":"code snippets , x AoristicSum object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/AoristicSum-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Aoristic Sum — AoristicSum-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Count Apportioning — CountApportion-class","title":"Count Apportioning — CountApportion-class","text":"S4 class represent artifact apportioning results. Gives apportioning artifact types (columns) per site (rows) per period (dim. 3).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Count Apportioning — CountApportion-class","text":".Data \\(m \\times p \\times k\\) array giving proportion artifact type (\\(p\\)) given period (\\(k\\)). p \\(m \\times p \\times k\\) array giving probability apportioning artifact type (\\(p\\)) given period (\\(k\\)). method character string specifying distribution used apportioning (type popularity curve). length-one numeric vector giving beginning period interest (years AD). length-one numeric vector giving end period interest (years AD). step length-one numeric vector giving step size, .e. width time step apportioning (years AD).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Count Apportioning — CountApportion-class","text":"class inherits base array.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/CountApportion-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Count Apportioning — CountApportion-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Date Model — EventDate-class","title":"Date Model — EventDate-class","text":"S4 class store event accumulation times archaeological assemblages.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Date Model — EventDate-class","text":"dates length-\\(m\\) numeric vector dates expressed rata die. model multiple linear model: Gaussian multiple linear regression model fitted event date estimation prediction. keep integer vector giving subscripts CA components keep.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Date Model — EventDate-class","text":"Dates internally stored rata die. class inherits dimensio::CA.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"extract","dir":"Reference","previous_headings":"","what":"Extract","title":"Date Model — EventDate-class","text":"code snippets , x EventDate object. time(x) Extract dates assemblages. coef(x) Extract model coefficients. fitted(x) Extract model fitted values. residuals(x) Extract model residuals. sigma(x) Extract residual standard deviation. terms(x) Extract model terms.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/EventDate-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Date Model — EventDate-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Frequency Increment Test — IncrementTest-class","title":"Frequency Increment Test — IncrementTest-class","text":"S4 class represent Frequency Increment Test results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Frequency Increment Test — IncrementTest-class","text":"statistic numeric vector giving values t-statistic. parameter integer giving degrees freedom t-statistic. p_value numeric vector giving p-value test.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Frequency Increment Test — IncrementTest-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Frequency Increment Test — IncrementTest-class","text":"code snippets , x IncrementTest object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/IncrementTest-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Frequency Increment Test — IncrementTest-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Date — MeanDate-class","title":"Mean Date — MeanDate-class","text":"S4 class store weighted mean date (e.g. Mean Ceramic Date) archaeological assemblages.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Mean Date — MeanDate-class","text":"dates length-\\(p\\) numeric vector giving dates (ceramic) types expressed rata die. replications numeric matrix giving replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Mean Date — MeanDate-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Mean Date — MeanDate-class","text":"code snippets , x MeanDate object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/MeanDate-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Mean Date — MeanDate-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Permutation Order — PermutationOrder-class","title":"Permutation Order — PermutationOrder-class","text":"S4 classes represent permutation order.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Permutation Order — PermutationOrder-class","text":"rows_order integer vector giving rows permutation. columns_order integer vector giving columns permutation.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"subset","dir":"Reference","previous_headings":"","what":"Subset","title":"Permutation Order — PermutationOrder-class","text":"code snippets , x PermutationOrder object. x[[]] Extract information slot selected subscript . length-one character vector.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/PermutationOrder-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Permutation Order — PermutationOrder-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Rate of Change — RateOfChange-class","title":"Rate of Change — RateOfChange-class","text":"S4 class represent rates change aoristic analysis.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Rate of Change — RateOfChange-class","text":"replicates non-negative integer giving number replications. groups character vector store group names ().","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Rate of Change — RateOfChange-class","text":"class inherits aion::TimeSeries: dates internally stored rata die.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"coerce","dir":"Reference","previous_headings":"","what":"Coerce","title":"Rate of Change — RateOfChange-class","text":"code snippets , x AoristicSum object. .data.frame(x) Coerces data.frame.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/RateOfChange-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rate of Change — RateOfChange-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":null,"dir":"Reference","previous_headings":"","what":"Partial Bootstrap CA — RefinePermutationOrder-class","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"S4 class store partial bootstrap correspondence analysis results.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":"slots","dir":"Reference","previous_headings":"","what":"Slots","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"length numeric vector giving convex hull maximum dimension length. cutoff length-one numeric vector giving cutoff value samples selection. keep integer vector giving subscript variables kept.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/RefinePermutationOrder-class.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Partial Bootstrap CA — RefinePermutationOrder-class","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":null,"dir":"Reference","previous_headings":"","what":"Aoristic Analysis — aoristic","title":"Aoristic Analysis — aoristic","text":"Computes aoristic sum.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Aoristic Analysis — aoristic","text":"","code":"aoristic(x, y, ...) # S4 method for numeric,numeric aoristic( x, y, step = 1, start = min(x), end = max(y), calendar = CE(), weight = TRUE, groups = NULL ) # S4 method for ANY,missing aoristic( x, step = 1, start = NULL, end = NULL, calendar = CE(), weight = TRUE, groups = NULL )"},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Aoristic Analysis — aoristic","text":"x, y numeric vector giving lower upper boundaries time intervals, respectively. y missing, attempt made interpret x suitable way (see grDevices::xy.coords()). ... Currently used. step length-one integer vector giving step size, .e. width time step time series (defaults \\(1\\), .e. annual level). start length-one numeric vector giving beginning time window. end length-one numeric vector giving end time window. calendar TimeScale object specifying calendar x y (see calendar()). Defaults Gregorian Common Era. weight logical scalar: aoristic sum weighted length periods (default). FALSE aoristic sum number elements within time block. groups factor vector sense .factor(groups) defines grouping. x list (data.frame), groups can length-one vector giving index grouping component (column) x.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Aoristic Analysis — aoristic","text":"AoristicSum object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Aoristic Analysis — aoristic","text":"Aoristic analysis used determine probability contemporaneity archaeological sites assemblages. aoristic analysis distributes probability event uniformly temporal fraction period considered. aoristic sum distribution total number events assumed within period. Muller Hinz (2018) pointed overlapping temporal intervals related period categorization dating accuracy likely bias analysis. proposed weighting method overcome problem. method implemented (moment), see aoristAAR package.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Aoristic Analysis — aoristic","text":"Crema, E. R. (2012). Modelling Temporal Uncertainty Archaeological Analysis. Journal Archaeological Method Theory, 19(3): 440-61. doi:10.1007/s10816-011-9122-3 . Johnson, . (2004). Aoristic Analysis: Seeds New Approach Mapping Archaeological Distributions Time. Ausserer, K. F., Börner, W., Goriany, M. & Karlhuber-Vöckl, L. (ed.), Enter Past - E-Way Four Dimensions Cultural Heritage, Oxford: Archaeopress, p. 448-52. BAR International Series 1227. doi:10.15496/publikation-2085 Müller-Scheeßel, N. & Hinz, M. (2018). Aoristic Research R: Correcting Temporal Categorizations Archaeology. Presented Human History Digital Future (CAA 2018), Tubingen, March 21. https://www.youtube.com/watch?v=bUBukex30QI. Palmisano, ., Bevan, . & Shennan, S. (2017). Comparing Archaeological Proxies Long-Term Population Patterns: Example Central Italy. Journal Archaeological Science, 87: 59-72. doi:10.1016/j.jas.2017.10.001 . Ratcliffe, J. H. (2000). Aoristic Analysis: Spatial Interpretation Unspecific Temporal Events. International Journal Geographical Information Science, 14(7): 669-79. doi:10.1080/136588100424963 . Ratcliffe, J. H. (2002). Aoristic Signatures Spatio-Temporal Analysis High Volume Crime Patterns. Journal Quantitative Criminology, 18(1): 23-43. doi:10.1023/:1013240828824 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Aoristic Analysis — aoristic","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/aoristic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Aoristic Analysis — aoristic","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":null,"dir":"Reference","previous_headings":"","what":"Chronological Apportioning — apportion","title":"Chronological Apportioning — apportion","text":"Chronological Apportioning","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Chronological Apportioning — apportion","text":"","code":"apportion(object, ...) # S4 method for data.frame apportion( object, s0, s1, t0, t1, from = min(s0), to = max(s1), step = 25, method = c(\"uniform\", \"truncated\"), z = 2, progress = getOption(\"kairos.progress\") ) # S4 method for matrix apportion( object, s0, s1, t0, t1, from = min(s0), to = max(s1), step = 25, method = c(\"uniform\", \"truncated\"), z = 2, progress = getOption(\"kairos.progress\") )"},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Chronological Apportioning — apportion","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. s0 length-\\(m\\) numeric vector giving site beginning dates expressed CE years (BCE years must given negative numbers). s1 length-\\(m\\) numeric vector giving site end dates expressed CE years (BCE years must given negative numbers). t0 length-\\(p\\) numeric vector giving type beginning dates expressed CE years (BCE years must given negative numbers). t1 length-\\(p\\) numeric vector giving type end dates expressed CE years (BCE years must given negative numbers). length-one numeric vector giving beginning period interest (years CE). length-one numeric vector giving end period interest (years CE). step length-one integer vector giving step size, .e. width time step apportioning (years CE; defaults \\(25\\)). method character string specifying distribution used (type popularity curve). must one \"uniform\" (uniform distribution) \"truncated\" (truncated standard normal distribution). unambiguous substring can given. z integer value giving lower upper truncation points (defaults \\(2\\)). used method \"truncated\". progress logical scalar: progress bar displayed?","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Chronological Apportioning — apportion","text":"CountApportion object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Chronological Apportioning — apportion","text":"Roberts, J. M., Mills, B. J., Clark, J. J., Haas, W. R., Huntley, D. L. & Trowbridge, M. . (2012). Method Chronological Apportioning Ceramic Assemblages. Journal Archaeological Science, 39(5): 1513-20. doi:10.1016/j.jas.2011.12.022 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/apportion.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Chronological Apportioning — apportion","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce to a Data Frame — data.frame","title":"Coerce to a Data Frame — data.frame","text":"Coerce Data Frame","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce to a Data Frame — data.frame","text":"","code":"# S4 method for MeanDate as.data.frame(x, ..., calendar = getOption(\"kairos.calendar\")) # S4 method for AoristicSum as.data.frame(x, ..., calendar = getOption(\"kairos.calendar\")) # S4 method for IncrementTest as.data.frame(x, row.names = NULL, optional = FALSE, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce to a Data Frame — data.frame","text":"x object. ... parameters passed data.frame(). calendar TimeScale object specifying target calendar (see calendar()). NULL, rata die returned. row.names, optional Currently used.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce to a Data Frame — data.frame","text":"data.frame extra time column giving (decimal) years time series sampled.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/data.frame.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Coerce to a Data Frame — data.frame","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":null,"dir":"Reference","previous_headings":"","what":"Event and Accumulation Dates — event","title":"Event and Accumulation Dates — event","text":"Fits date event model.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Event and Accumulation Dates — event","text":"","code":"event(object, dates, ...) # S4 method for data.frame,numeric event(object, dates, rank = NULL, sup_row = NULL, calendar = CE(), ...) # S4 method for matrix,numeric event(object, dates, rank = NULL, sup_row = NULL, calendar = CE(), ...) # S4 method for EventDate summary(object, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Event and Accumulation Dates — event","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates numeric vector dates. named, names must match row names object. ... arguments passed internal methods. rank integer specifying number CA factorial components use linear model fitting (see details). NULL (default), axes corresponding least 60% inertia used. sup_row numeric logical vector specifying indices supplementary rows. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Event and Accumulation Dates — event","text":"EventDate object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Event and Accumulation Dates — event","text":"implementation chronological modeling method proposed Bellanger Husi (2012, 2013). Event accumulation dates density estimates occupation duration archaeological site (Bellanger Husi 2012, 2013). event date estimation terminus post-quem archaeological assemblage. accumulation date represents \"chronological profile\" assemblage. According Bellanger Husi (2012), accumulation date can interpreted \"best [...] formation process reflecting duration succession events scale archaeological time, worst, imprecise dating due contamination context residual intrusive material.\" words, accumulation dates estimate occurrence archaeological events rhythms long term. Dates converted rata die computation. method relies strong archaeological statistical assumptions (see vignette(\"event\")).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Event and Accumulation Dates — event","text":"Bellanger, L. & Husi, P. (2013). Mesurer et modéliser le temps inscrit dans la matière à partir d'une source matérielle : la céramique médiévale. Mesure et Histoire Médiévale. Histoire ancienne et médiévale. Paris: Publication de la Sorbonne, p. 119-134. Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Bellanger, L., Tomassone, R. & Husi, P. (2008). Statistical Approach Dating Archaeological Contexts. Journal Data Science, 6, 135-154. Bellanger, L., Husi, P. & Tomassone, R. (2006). Une approche statistique pour la datation de contextes archéologiques. Revue de Statistique Appliquée, 54(2), 65-81. Bellanger, L., Husi, P. & Tomassone, R. (2006). Statistical Aspects Pottery Quantification Dating Archaeological Contexts. Archaeometry, 48(1), 169-183. doi:10.1111/j.1475-4754.2006.00249.x . Poblome, J. & Groenen, P. J. F. (2003). Constrained Correspondence Analysis Seriation Sagalassos Tablewares. Doerr, M. & Apostolis, S. (eds.), Digital Heritage Archaeology. Athens: Hellenic Ministry Culture.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Event and Accumulation Dates — event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Event and Accumulation Dates — event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Frequency Increment Test — fit","title":"Frequency Increment Test — fit","text":"Frequency Increment Test","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Frequency Increment Test — fit","text":"","code":"fit(object, dates, ...) # S4 method for data.frame,numeric fit(object, dates, calendar = CE(), level = 0.95, roll = FALSE, window = 3) # S4 method for matrix,numeric fit(object, dates, calendar = CE(), level = 0.95, roll = FALSE, window = 3)"},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Frequency Increment Test — fit","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates length-\\(m\\) numeric vector dates. ... Currently used. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era. level length-one numeric vector giving confidence level. roll logical scalar: time series subsetted look episodes selection? window odd integer giving size rolling window. used roll TRUE.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Frequency Increment Test — fit","text":"IncrementTest object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Frequency Increment Test — fit","text":"Frequency Increment Test (FIT) rejects neutrality distribution normalized variant frequency increments exhibits mean deviates significantly zero. roll TRUE, time series subsetted according window see episodes selection can identified among variables might show overall selection.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Frequency Increment Test — fit","text":"Feder, . F., Kryazhimskiy, S. & Plotkin, J. B. (2014). Identifying Signatures Selection Genetic Time Series. Genetics, 196(2): 509-522. doi:10.1534/genetics.113.158220 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Frequency Increment Test — fit","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Frequency Increment Test — fit","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Group by phase ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Frequency Increment Test freq <- fit(counts, dates, calendar = NULL) ## Plot time vs abundance plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\") ## Plot time vs abundance and highlight selection freq <- fit(counts, dates, calendar = NULL, roll = TRUE, window = 5) plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/kairos-deprecated.html","id":null,"dir":"Reference","previous_headings":"","what":"Deprecated Functions in kairos — kairos-deprecated","title":"Deprecated Functions in kairos — kairos-deprecated","text":"functions still work removed (defunct) next version.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":null,"dir":"Reference","previous_headings":"","what":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"toolkit absolute relative dating analysis chronological patterns. package includes functions chronological modeling dating archaeological assemblages count data. provides methods matrix seriation. also allows compute time point estimates density estimates occupation duration archaeological site.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":"package-options","dir":"Reference","previous_headings":"","what":"Package options","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"kairos uses following options() configure behavior: kairos.progress: logical scalar. progress bars displayed?","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/kairos-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"kairos: Analysis of Chronological Patterns from Archaeological Count Data — kairos-package","text":"Full list authors contributors (alphabetic order) Package maintainer Nicolas Frerebeaunicolas.frerebeau@u-bordeaux-montaigne.fr Archéosciences Bordeaux (UMR 6034) Maison de l'Archéologie Université Bordeaux Montaigne F-33607 Pessac cedex France","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"Mean Ceramic Date — mcd","title":"Mean Ceramic Date — mcd","text":"Estimates Mean Ceramic Date assemblage.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Mean Ceramic Date — mcd","text":"","code":"mcd(object, dates, ...) # S4 method for numeric,numeric mcd(object, dates, calendar = CE()) # S4 method for data.frame,numeric mcd(object, dates, calendar = CE()) # S4 method for matrix,numeric mcd(object, dates, calendar = CE())"},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Mean Ceramic Date — mcd","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates length-\\(p\\) numeric vector dates expressed years. ... Currently used. calendar TimeScale object specifying calendar dates (see calendar()). Defaults Gregorian Common Era.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Mean Ceramic Date — mcd","text":"MeanDate object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Mean Ceramic Date — mcd","text":"Mean Ceramic Date (MCD) point estimate occupation archaeological site (South 1977). MCD estimated weighted mean date midpoints ceramic types (based absolute dates known production interval) found given assemblage. weights relative frequencies respective types assemblage. bootstrapping procedure used estimate confidence interval given MCD. assemblage, large number new bootstrap replicates created, sample size, resampling original assemblage replacement. MCDs calculated replicates upper lower boundaries confidence interval associated MCD returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Mean Ceramic Date — mcd","text":"South, S. . (1977). Method Theory Historical Archaeology. New York: Academic Press.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Mean Ceramic Date — mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mcd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Mean Ceramic Date — mcd","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Set the start and end dates for each ceramic type dates <- list( LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050), GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150), RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350), PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225), SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300), PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450) ) ## Calculate date midpoints mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1)) ## Calculate MCD (mc_dates <- mcd(zuni[100:125, ], dates = mid)) #> 26 x 18 x 1 time series observed between 276230.3 and 459613.1 r.d. ## Get MCD in years CE time(mc_dates, calendar = CE()) #> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011 #> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799 #> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176 #> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757 ## Plot plot(mc_dates) ## Bootstrap resampling boot <- bootstrap(mc_dates, n = 30) head(boot) #> original mean bias error #> LZ0789 757.2917 NaN NaN NA #> LZ0783 796.6667 844.3302 47.663512 113.75952 #> LZ0782 797.5000 804.1673 6.667310 65.39379 #> LZ0778 952.5862 979.1447 26.558445 102.13488 #> LZ0777 996.2963 1002.7325 6.436184 82.99103 #> LZ0776 1016.0714 1047.2820 31.210578 76.34201 ## Jackknife resampling jack <- jackknife(mc_dates) head(jack) #> original mean bias error #> LZ0789 757.2917 768.2870 186.921296 207.5535 #> LZ0783 796.6667 806.9974 175.621693 228.0861 #> LZ0782 797.5000 804.1715 113.415558 169.0563 #> LZ0778 952.5862 954.5205 32.882529 138.6064 #> LZ0777 996.2963 996.6640 6.251785 111.0144 #> LZ0776 1016.0714 1017.1652 18.594831 72.6602 ## Simulation sim <- simulate(mc_dates, nsim = 30) plot(sim, interval = \"range\", pch = 16)"},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract Model Results — model","title":"Extract Model Results — model","text":"coef() extracts model coefficients (see stats::coef()). fitted() extracts model fitted values (see stats::fitted()). residuals() extracts model residuals (see stats::residuals()). sigma() extracts residual standard deviation (see stats::sigma()). terms() extracts model terms (see stats::terms()).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract Model Results — model","text":"","code":"# S4 method for EventDate coef(object, calendar = NULL, ...) # S4 method for EventDate fitted(object, calendar = NULL, ...) # S4 method for EventDate residuals(object, calendar = NULL, ...) # S4 method for EventDate sigma(object, calendar = NULL, ...) # S4 method for EventDate terms(x, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract Model Results — model","text":"calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned. ... Currently used. x, object EventDate object.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract Model Results — model","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract Model Results — model","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":null,"dir":"Reference","previous_headings":"","what":"Get or Set Parts of an Object — mutators","title":"Get or Set Parts of an Object — mutators","text":"Getters setters retrieve set parts object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get or Set Parts of an Object — mutators","text":"","code":"# S4 method for AoristicSum weights(object, ...) # S4 method for CountApportion weights(object, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get or Set Parts of an Object — mutators","text":"object object get set element(s). ... Currently used.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/mutators.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Get or Set Parts of an Object — mutators","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":null,"dir":"Reference","previous_headings":"","what":"Rearranges a Data Matrix — permute","title":"Rearranges a Data Matrix — permute","text":"permute() rearranges data matrix according permutation order. get_order() returns seriation order rows /columns.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rearranges a Data Matrix — permute","text":"","code":"permute(object, order, ...) get_order(x, ...) # S4 method for data.frame,PermutationOrder permute(object, order) # S4 method for matrix,PermutationOrder permute(object, order) # S4 method for PermutationOrder get_order(x, margin = c(1, 2))"},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rearranges a Data Matrix — permute","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. x, order PermutationOrder object giving permutation order rows columns. margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rearranges a Data Matrix — permute","text":"permute() returns permuted matrix permuted data.frame (object).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rearranges a Data Matrix — permute","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/permute.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Rearranges a Data Matrix — permute","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot Aoristic Analysis — plot_aoristic","title":"Plot Aoristic Analysis — plot_aoristic","text":"Plot Aoristic Analysis","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot Aoristic Analysis — plot_aoristic","text":"","code":"# S4 method for AoristicSum,missing plot( x, calendar = getOption(\"kairos.calendar\"), type = c(\"bar\"), flip = FALSE, ncol = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... ) # S4 method for AoristicSum image(x, calendar = getOption(\"kairos.calendar\"), ...) # S4 method for RateOfChange,missing plot( x, calendar = getOption(\"kairos.calendar\"), level = 0.95, flip = FALSE, ncol = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot Aoristic Analysis — plot_aoristic","text":"x AoristicSum object. calendar TimeScale object specifying target calendar (see calendar()). type character string specifying whether bar density plotted? must one \"bar\" \"density\". unambiguous substring can given. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? panel.first expression evaluated plot axes set plotting takes place. can useful drawing background grids. panel.last expression evaluated plotting taken place axes, title box added. ... parameters passed panel (e.g. graphical parameters). level length-one numeric vector giving confidence level.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot Aoristic Analysis — plot_aoristic","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Plot Aoristic Analysis — plot_aoristic","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_aoristic.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot Aoristic Analysis — plot_aoristic","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Event Plot — plot_event","title":"Event Plot — plot_event","text":"Produces activity tempo plot.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Event Plot — plot_event","text":"","code":"# S4 method for EventDate,missing plot( x, type = c(\"activity\", \"tempo\"), event = FALSE, calendar = getOption(\"kairos.calendar\"), select = 1, n = 500, eps = 1e-09, col.accumulation = \"black\", col.event = \"red\", flip = FALSE, ncol = NULL, xlab = NULL, ylab = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Event Plot — plot_event","text":"x EventDate object. type character string indicating type plot. must one \"activity\" (default) \"tempo\" (see details). unambiguous substring can given. event logical scalar: distribution event date displayed? used type \"activity\". calendar TimeScale object specifying target calendar (see calendar()). select numeric character vector giving selection assemblage drawn. n length-one non-negative numeric vector giving desired length vector quantiles density computation. eps length-one numeric value giving cutoff values removed. col.accumulation color specification accumulation density curve. col.event color specification event density curve. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. xlab, ylab character vector giving x y axis labels. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? ... parameters passed panel (e.g. graphical parameters).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Event Plot — plot_event","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"event-and-acccumulation-dates","dir":"Reference","previous_headings":"","what":"Event and Acccumulation Dates","title":"Event Plot — plot_event","text":"plot() displays probability estimate density curves archaeological assemblage dates (event accumulation dates; Bellanger Husi 2012). event date plotted line, accumulation date shown grey filled area. accumulation date can displayed tempo plot (Dye 2016) activity plot (Philippe Vibet 2020): tempo tempo plot estimates cumulative occurrence archaeological events, slope plot directly reflects pace change. activity activity plot displays first derivative tempo plot.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Event Plot — plot_event","text":"Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Dye, T. S. (2016). Long-Term Rhythms Development Hawaiian Social Stratification. Journal Archaeological Science, 71, 1-9. doi:10.1016/j.jas.2016.05.006 . Philippe, . & Vibet, M.-. (2020). Analysis Archaeological Phases Using R Package ArchaeoPhases. Journal Statistical Software, Code Snippets, 93(1), 1-25. doi:10.18637/jss.v093.c01 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Event Plot — plot_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Event Plot — plot_event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":null,"dir":"Reference","previous_headings":"","what":"Detection of Selective Processes — plot_fit","title":"Detection of Selective Processes — plot_fit","text":"Produces abundance vs time diagram.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detection of Selective Processes — plot_fit","text":"","code":"# S4 method for IncrementTest,missing plot( x, calendar = getOption(\"kairos.calendar\"), col.neutral = \"#004488\", col.selection = \"#BB5566\", col.roll = \"grey\", flip = FALSE, ncol = NULL, xlab = NULL, ylab = NULL, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detection of Selective Processes — plot_fit","text":"x IncrementTest object plotted. calendar TimeScale object specifying target calendar (see calendar()). col.neutral, col.selection, col.roll vector colors. flip logical scalar: y-axis (ticks numbering) flipped side 2 (left) 4 (right) series series facet \"multiple\"? ncol integer specifying number columns use facet \"multiple\". Defaults 1 4 series, otherwise 2. xlab, ylab character vector giving x y axis labels. main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x y axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? ... parameters passed panel (e.g. graphical parameters).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detection of Selective Processes — plot_fit","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Detection of Selective Processes — plot_fit","text":"Results frequency increment test can displayed abundance vs time diagram aid detection quantification selective processes archaeological record. roll TRUE, time series subsetted according window see episodes selection can identified among decoration types might show overall selection. , shading highlights data points fit() identifies selection.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"note","dir":"Reference","previous_headings":"","what":"Note","title":"Detection of Selective Processes — plot_fit","text":"Displaying FIT results abundance vs time diagram adapted Ben Marwick's original idea.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Detection of Selective Processes — plot_fit","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_fit.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detection of Selective Processes — plot_fit","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Group by phase ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Frequency Increment Test freq <- fit(counts, dates, calendar = NULL) ## Plot time vs abundance plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\") ## Plot time vs abundance and highlight selection freq <- fit(counts, dates, calendar = NULL, roll = TRUE, window = 5) plot(freq, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"MCD Plot — plot_mcd","title":"MCD Plot — plot_mcd","text":"MCD Plot","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"MCD Plot — plot_mcd","text":"","code":"# S4 method for MeanDate,missing plot( x, calendar = getOption(\"kairos.calendar\"), decreasing = TRUE, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... ) # S4 method for SimulationMeanDate,missing plot( x, calendar = getOption(\"kairos.calendar\"), interval = \"student\", level = 0.8, decreasing = TRUE, main = NULL, sub = NULL, ann = graphics::par(\"ann\"), axes = TRUE, frame.plot = axes, panel.first = NULL, panel.last = NULL, ... )"},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"MCD Plot — plot_mcd","text":"x MeanDate object. calendar TimeScale object specifying target calendar (see calendar()). decreasing logical scalar: sort increasing decreasing? main character string giving main title plot. sub character string giving subtitle plot. ann logical scalar: default annotation (title x, y z axis labels) appear plot? axes logical scalar: axes drawn plot? frame.plot logical scalar: box drawn around plot? panel.first expression evaluated plot axes set plotting takes place. can useful drawing background grids. panel.last expression evaluated plotting taken place axes, title box added. ... graphical parameters. interval character string giving type confidence interval returned. must one \"student\" (default), \"normal\", \"percentiles\" \"range\" (min-max). unambiguous substring can given. level length-one numeric vector giving confidence level. used interval \"range\".","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"MCD Plot — plot_mcd","text":"plot() called side-effects: results graphic displayed (invisibly returns x).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"MCD Plot — plot_mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_mcd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"MCD Plot — plot_mcd","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Set the start and end dates for each ceramic type dates <- list( LINO = c(600, 875), KIAT = c(850, 950), RED = c(900, 1050), GALL = c(1025, 1125), ESC = c(1050, 1150), PUBW = c(1050, 1150), RES = c(1000, 1200), TULA = c(1175, 1300), PINE = c(1275, 1350), PUBR = c(1000, 1200), WING = c(1100, 1200), WIPO = c(1125, 1225), SJ = c(1200, 1300), LSJ = c(1250, 1300), SPR = c(1250, 1300), PINER = c(1275, 1325), HESH = c(1275, 1450), KWAK = c(1275, 1450) ) ## Calculate date midpoints mid <- vapply(X = dates, FUN = mean, FUN.VALUE = numeric(1)) ## Calculate MCD (mc_dates <- mcd(zuni[100:125, ], dates = mid)) #> 26 x 18 x 1 time series observed between 276230.3 and 459613.1 r.d. ## Get MCD in years CE time(mc_dates, calendar = CE()) #> [1] 757.2912 796.6659 797.4991 952.5855 996.2952 1016.0738 1027.5011 #> [8] 1059.5249 1073.6597 1075.5213 1089.5820 1092.8564 1100.0000 1127.7799 #> [15] 1137.1101 1200.0017 1204.3868 1207.1436 1219.4454 1227.3745 1235.4176 #> [22] 1237.5000 1238.8896 1253.1241 1256.2502 1259.3757 ## Plot plot(mc_dates) ## Bootstrap resampling boot <- bootstrap(mc_dates, n = 30) head(boot) #> original mean bias error #> LZ0789 757.2917 NaN NaN NA #> LZ0783 796.6667 849.0927 52.42608 129.86685 #> LZ0782 797.5000 837.4301 39.93006 90.02861 #> LZ0778 952.5862 997.4710 44.88481 84.95807 #> LZ0777 996.2963 1029.6155 33.31919 89.61071 #> LZ0776 1016.0714 1005.0231 -11.04830 62.41711 ## Jackknife resampling jack <- jackknife(mc_dates) head(jack) #> original mean bias error #> LZ0789 757.2917 768.2870 186.921296 207.5535 #> LZ0783 796.6667 806.9974 175.621693 228.0861 #> LZ0782 797.5000 804.1715 113.415558 169.0563 #> LZ0778 952.5862 954.5205 32.882529 138.6064 #> LZ0777 996.2963 996.6640 6.251785 111.0144 #> LZ0776 1016.0714 1017.1652 18.594831 72.6602 ## Simulation sim <- simulate(mc_dates, nsim = 30) plot(sim, interval = \"range\", pch = 16)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":null,"dir":"Reference","previous_headings":"","what":"Abundance vs Time Plot — plot_time","title":"Abundance vs Time Plot — plot_time","text":"Produces abundance vs time diagram.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Abundance vs Time Plot — plot_time","text":"","code":"plot_time(object, dates, ...) # S4 method for data.frame,numeric plot_time(object, dates, calendar = getOption(\"kairos.calendar\"), ...) # S4 method for matrix,numeric plot_time(object, dates, calendar = getOption(\"kairos.calendar\"), ...)"},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Abundance vs Time Plot — plot_time","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). dates numeric vector dates. ... parameters passed aion::plot(). calendar TimeScale object specifying target calendar (see calendar()).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Abundance vs Time Plot — plot_time","text":"plot_time() called side-effects: results graphic displayed (invisibly returns object).","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Abundance vs Time Plot — plot_time","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/plot_time.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Abundance vs Time Plot — plot_time","text":"","code":"## Data from Crema et al. 2016 data(\"merzbach\", package = \"folio\") ## Coerce the merzbach dataset to a count matrix ## Keep only decoration types that have a maximum frequency of at least 50 keep <- apply(X = merzbach, MARGIN = 2, FUN = function(x) max(x) >= 50) counts <- merzbach[, keep] ## Set dates ## We use the row names as time coordinates (roman numerals) dates <- as.numeric(utils::as.roman(rownames(counts))) ## Plot abundance vs time plot_time(counts, dates, calendar = NULL, ncol = 3, xlab = \"Phases\")"},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Predict Event and Accumulation Dates — predict_event","title":"Predict Event and Accumulation Dates — predict_event","text":"Estimates event accumulation dates assemblage.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Predict Event and Accumulation Dates — predict_event","text":"","code":"predict_event(object, data, ...) predict_accumulation(object, data, ...) # S4 method for EventDate,missing predict_event(object, margin = 1, level = 0.95, calendar = NULL) # S4 method for EventDate,matrix predict_event(object, data, margin = 1, level = 0.95, calendar = NULL) # S4 method for EventDate,missing predict_accumulation(object, calendar = NULL) # S4 method for EventDate,matrix predict_accumulation(object, data, level = 0.95, calendar = NULL)"},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Predict Event and Accumulation Dates — predict_event","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). data numeric matrix data.frame count data (absolute frequencies) predict event accumulation dates. ... arguments passed internal methods. margin numeric vector giving subscripts prediction applied : 1 indicates rows, 2 indicates columns. level length-one numeric vector giving confidence level. calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Predict Event and Accumulation Dates — predict_event","text":"predict_event() returns data.frame. predict_accumulation() returns data.frame.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Predict Event and Accumulation Dates — predict_event","text":"Bellanger, L. & Husi, P. (2013). Mesurer et modéliser le temps inscrit dans la matière à partir d'une source matérielle : la céramique médiévale. Mesure et Histoire Médiévale. Histoire ancienne et médiévale. Paris: Publication de la Sorbonne, p. 119-134. Bellanger, L. & Husi, P. (2012). Statistical Tool Dating Interpreting Archaeological Contexts Using Pottery. Journal Archaeological Science, 39(4), 777-790. doi:10.1016/j.jas.2011.06.031 . Bellanger, L., Tomassone, R. & Husi, P. (2008). Statistical Approach Dating Archaeological Contexts. Journal Data Science, 6, 135-154. Bellanger, L., Husi, P. & Tomassone, R. (2006). Une approche statistique pour la datation de contextes archéologiques. Revue de Statistique Appliquée, 54(2), 65-81. Bellanger, L., Husi, P. & Tomassone, R. (2006). Statistical Aspects Pottery Quantification Dating Archaeological Contexts. Archaeometry, 48(1), 169-183. doi:10.1111/j.1475-4754.2006.00249.x .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Predict Event and Accumulation Dates — predict_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/predict_event.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Predict Event and Accumulation Dates — predict_event","text":"","code":"## Data from Peeples and Schachner 2012 data(\"zuni\", package = \"folio\") ## Assume that some assemblages are reliably dated (this is NOT a real example) zuni_dates <- c( LZ0569 = 1097, LZ0279 = 1119, CS16 = 1328, LZ0066 = 1111, LZ0852 = 1216, LZ1209 = 1251, CS144 = 1262, LZ0563 = 1206, LZ0329 = 1076, LZ0005Q = 859, LZ0322 = 1109, LZ0067 = 863, LZ0578 = 1180, LZ0227 = 1104, LZ0610 = 1074 ) ## Model the event and accumulation date for each assemblage model <- event(zuni, zuni_dates, rank = 10) plot(model, select = 1:10, event = TRUE, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. aion AD, BC, BCE, BP, CE, b2k, calendar, start, start, time, year_axis arkhe bootstrap, jackknife, remove_NA, remove_zero, replace_NA, replace_zero","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":null,"dir":"Reference","previous_headings":"","what":"Resample Event Dates — resample_event","title":"Resample Event Dates — resample_event","text":"bootstrap() generate bootstrap estimations event. jackknife() generate jackknife estimations event.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Resample Event Dates — resample_event","text":"","code":"# S4 method for EventDate jackknife(object, level = 0.95, progress = getOption(\"kairos.progress\"), ...) # S4 method for EventDate bootstrap( object, level = 0.95, probs = c(0.05, 0.95), n = 1000, progress = getOption(\"kairos.progress\"), ... )"},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Resample Event Dates — resample_event","text":"object EventDate object (typically returned event()). level length-one numeric vector giving confidence level. progress logical scalar: progress bar displayed? ... arguments passed internal methods. probs numeric vector probabilities values \\([0,1]\\). n non-negative integer specifying number bootstrap replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Resample Event Dates — resample_event","text":"data.frame.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Resample Event Dates — resample_event","text":"jackknife() used, one type/fabric removed time statistics recalculated. way, one can assess whether certain type/fabric substantial influence date estimate. three columns data.frame returned, giving results resampling procedure (jackknifing fabrics) assemblage (rows) following columns: mean jackknife mean (event date). bias jackknife estimate bias. error standard error predicted means. bootstrap() used, large number new bootstrap assemblages created, sample size, resampling original assemblage replacement. , examination bootstrap statistics makes possible pinpoint assemblages require investigation. five columns data.frame returned, giving bootstrap distribution statistics replicated assemblage (rows) following columns: min Minimum value. mean Mean value (event date). max Maximum value. Q5 Sample quantile 0.05 probability. Q95 Sample quantile 0.95 probability.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/resample_event.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Resample Event Dates — resample_event","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":null,"dir":"Reference","previous_headings":"","what":"Resample Mean Ceramic Dates — resample_mcd","title":"Resample Mean Ceramic Dates — resample_mcd","text":"bootstrap() generate bootstrap estimations MCD. jackknife() generate jackknife estimations MCD.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Resample Mean Ceramic Dates — resample_mcd","text":"","code":"# S4 method for MeanDate bootstrap(object, n = 1000, f = NULL, calendar = getOption(\"kairos.calendar\")) # S4 method for MeanDate jackknife(object, f = NULL, calendar = getOption(\"kairos.calendar\")) # S4 method for MeanDate simulate(object, nsim = 1000)"},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Resample Mean Ceramic Dates — resample_mcd","text":"object MeanDate object (typically returned mcd()). n non-negative integer specifying number bootstrap replications. f function takes single numeric vector (result resampling procedure) argument. calendar TimeScale object specifying target calendar (see calendar()). nsim non-negative integer specifying number simulations.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Resample Mean Ceramic Dates — resample_mcd","text":"f NULL, bootstrap() jackknife() return data.frame following elements (else, returns result f applied n resampled values) : original observed value. mean bootstrap/jackknife estimate mean. bias bootstrap/jackknife estimate bias. error boostrap/jackknife estimate standard erro.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/resample_mcd.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Resample Mean Ceramic Dates — resample_mcd","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":null,"dir":"Reference","previous_headings":"","what":"Rate of Change — roc","title":"Rate of Change — roc","text":"Computes rate change aoristic analysis.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rate of Change — roc","text":"","code":"roc(object, ...) # S4 method for AoristicSum roc(object, n = 100)"},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rate of Change — roc","text":"object AoristicSum object. ... Currently used. n non-negative integer giving number replications (see details).","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rate of Change — roc","text":"RateOfChange object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Rate of Change — roc","text":"Baxter, M. J. & Cool, H. E. M. (2016). Reinventing Wheel? Modelling Temporal Uncertainty Applications Brooch Distributions Roman Britain. Journal Archaeological Science, 66: 120-27. doi:10.1016/j.jas.2015.12.007 . Crema, E. R. (2012). Modelling Temporal Uncertainty Archaeological Analysis. Journal Archaeological Method Theory, 19(3): 440-61. doi:10.1007/s10816-011-9122-3 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Rate of Change — roc","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/roc.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Rate of Change — roc","text":"","code":"## Data from Husi 2022 data(\"loire\", package = \"folio\") ## Get time range loire_range <- loire[, c(\"lower\", \"upper\")] ## Calculate aoristic sum (normal) aorist_raw <- aoristic(loire_range, step = 50, weight = FALSE) plot(aorist_raw, col = \"grey\") ## Calculate aoristic sum (weights) aorist_weighted <- aoristic(loire_range, step = 50, weight = TRUE) plot(aorist_weighted, col = \"grey\") ## Calculate aoristic sum (weights) by group aorist_groups <- aoristic(loire_range, step = 50, weight = TRUE, groups = loire$area) plot(aorist_groups, flip = TRUE, col = \"grey\") image(aorist_groups) ## Rate of change roc_weighted <- roc(aorist_weighted, n = 30) plot(roc_weighted) ## Rate of change by group roc_groups <- roc(aorist_groups, n = 30) plot(roc_groups, flip = TRUE)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":null,"dir":"Reference","previous_headings":"","what":"Correspondence Analysis-Based Seriation — seriate_average","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Correspondence Analysis-Based Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"","code":"seriate_average(object, ...) # S4 method for data.frame seriate_average(object, margin = c(1, 2), axes = 1, ...) # S4 method for matrix seriate_average(object, margin = c(1, 2), axes = 1, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... arguments passed internal methods. margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns, c(2, 1) indicates columns rows. axes integer vector giving subscripts CA axes used.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"AveragePermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Correspondence analysis (CA) effective method seriation archaeological assemblages. order rows columns given coordinates along one dimension CA space, assumed account temporal variation. direction temporal change within correspondence analysis space arbitrary: additional information needed determine actual order time.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"Ihm, P. (2005). Contribution History Seriation Archaeology. C. Weihs & W. Gaul (Eds.), Classification: Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_average.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Correspondence Analysis-Based Seriation — seriate_average","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":null,"dir":"Reference","previous_headings":"","what":"Reciprocal Ranking Seriation — seriate_rank","title":"Reciprocal Ranking Seriation — seriate_rank","text":"Reciprocal Ranking Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reciprocal Ranking Seriation — seriate_rank","text":"","code":"seriate_rank(object, ...) # S4 method for data.frame seriate_rank(object, EPPM = FALSE, margin = c(1, 2), stop = 100) # S4 method for matrix seriate_rank(object, EPPM = FALSE, margin = c(1, 2), stop = 100)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reciprocal Ranking Seriation — seriate_rank","text":"object \\(m \\times p\\) numeric matrix data.frame count data (absolute frequencies giving number individuals category, .e. contingency table). data.frame coerced numeric matrix via data.matrix(). ... Currently used. EPPM logical scalar: seriation computed EPPM instead raw data? margin numeric vector giving subscripts rearrangement applied : 1 indicates rows, 2 indicates columns, c(1, 2) indicates rows columns, c(2, 1) indicates columns rows. stop integer giving stopping rule (.e. maximum number iterations) avoid infinite loop.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reciprocal Ranking Seriation — seriate_rank","text":"RankPermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Reciprocal Ranking Seriation — seriate_rank","text":"procedure iteratively rearrange rows /columns according weighted rank data matrix convergence. Note procedure enter infinite loop. convergence reached maximum number iterations, stops warning.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Reciprocal Ranking Seriation — seriate_rank","text":"Desachy, B. (2004). Le sériographe EPPM: un outil informatisé de sériation graphique pour tableaux de comptages. Revue archéologique de Picardie, 3(1), 39-56. doi:10.3406/pica.2004.2396 . Dunnell, R. C. (1970). Seriation Method Evaluation. American Antiquity, 35(03), 305-319. doi:10.2307/278341 . Ihm, P. (2005). Contribution History Seriation Archaeology. C. Weihs & W. Gaul (Eds.), Classification: Ubiquitous Challenge. Berlin Heidelberg: Springer, p. 307-316. doi:10.1007/3-540-28084-7_34 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Reciprocal Ranking Seriation — seriate_rank","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_rank.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reciprocal Ranking Seriation — seriate_rank","text":"","code":"## Replicates Desachy 2004 results data(\"compiegne\", package = \"folio\") ## Get seriation order for columns on EPPM using the reciprocal averaging method ## Expected column order: N, A, C, K, P, L, B, E, I, M, D, G, O, J, F, H (indices <- seriate_rank(compiegne, EPPM = TRUE, margin = 2)) #> #> Permutation order for matrix seriation: #> - Row order: 1 2 3 4 5... #> - Column order: 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8... ## Get permutation order get_order(indices, 1) # rows #> [1] 1 2 3 4 5 get_order(indices, 2) # columns #> [1] 14 1 3 11 16 12 2 5 9 13 4 7 15 10 6 8 ## Permute columns (new <- permute(compiegne, indices)) #> N A C K P L B E I M D G O J F H #> 5 1510 13740 8270 1740 0 460 375 20 0 0 250 40 350 5 10 80 #> 4 565 13540 10110 7210 450 1785 1520 1230 0 410 740 265 310 105 635 400 #> 3 160 12490 4220 6750 275 5930 5255 1395 30 350 980 440 10 580 1415 680 #> 2 410 6940 5800 2130 410 2410 2880 1510 620 910 3400 1080 310 2075 2280 2840 #> 1 190 6490 6900 1080 50 570 2350 670 340 740 2745 950 985 2660 3020 6700 ## See the vignette if (FALSE) { utils::vignette(\"seriation\") }"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":null,"dir":"Reference","previous_headings":"","what":"Refine CA-based Seriation — seriate_refine","title":"Refine CA-based Seriation — seriate_refine","text":"Refine CA-based Seriation","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Refine CA-based Seriation — seriate_refine","text":"","code":"seriate_refine(object, ...) # S4 method for AveragePermutationOrder seriate_refine(object, cutoff, margin = 1, axes = 1, n = 30, ...) # S4 method for BootstrapCA seriate_refine(object, cutoff, margin = 1, axes = 1, ...)"},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Refine CA-based Seriation — seriate_refine","text":"object PermutationOrder object (typically returned seriate_average()). ... arguments passed internal methods. cutoff function takes numeric vector argument returns single numeric value (see ). margin length-one numeric vector giving subscripts refinement applied : 1 indicates rows, 2 indicates columns. axes integer vector giving subscripts CA axes used. n non-negative integer giving number bootstrap replications.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Refine CA-based Seriation — seriate_refine","text":"RefinePermutationOrder object.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Refine CA-based Seriation — seriate_refine","text":"seriate_refine() allows identify samples subject sampling error samples underlying structural relationships might influencing ordering along CA space. relies partial bootstrap approach CA-based seriation sample replicated n times. maximum dimension length convex hull around sample point cloud allows remove samples given cutoff value. According Peebles Schachner (2012), \"[] point removal procedure [results ] reduced dataset position individuals within CA highly stable produces ordering consistent assumptions frequency seriation.\"","code":""},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Refine CA-based Seriation — seriate_refine","text":"Peeples, M. ., & Schachner, G. (2012). Refining correspondence analysis-based ceramic seriation regional data sets. Journal Archaeological Science, 39(8), 2818-2827. doi:10.1016/j.jas.2012.04.040 .","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/seriate_refine.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Refine CA-based Seriation — seriate_refine","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":null,"dir":"Reference","previous_headings":"","what":"Sampling Times — series","title":"Sampling Times — series","text":"Get times time series sampled.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Sampling Times — series","text":"","code":"# S4 method for EventDate time(x, calendar = NULL)"},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Sampling Times — series","text":"x R object. calendar TimeScale object specifying target calendar (see calendar()). NULL (default), rata die returned.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Sampling Times — series","text":"numeric vector.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/series.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Sampling Times — series","text":"N. Frerebeau","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract or Replace Parts of an Object — subset","title":"Extract or Replace Parts of an Object — subset","text":"Operators acting objects extract replace parts.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract or Replace Parts of an Object — subset","text":"","code":"# S4 method for MeanDate [(x, i, j, k, drop = FALSE) # S4 method for IncrementTest [(x, i, j, k, drop = FALSE) # S4 method for PermutationOrder,ANY,missing [[(x, i)"},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract or Replace Parts of an Object — subset","text":"x object extract element(s) replace element(s). , j, k Indices specifying elements extract replace. drop logical scalar: result coerced lowest possible dimension? works extracting elements, replacement.","code":""},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract or Replace Parts of an Object — subset","text":"subsetted object.","code":""},{"path":[]},{"path":"https://packages.tesselle.org/kairos/reference/subset.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"Extract or Replace Parts of an Object — subset","text":"N. Frerebeau","code":""}]