-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
81 lines (60 loc) · 2.49 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# -*- coding: utf-8 -*-
import sys, copy
import numpy as np
import lib.io
import lib.viz
import lib.nn
import lib.cl
def main(argv):
input_filename_x = 'train_data.csv'
input_filename_y = 'train_labels.csv'
test_input_filename = 'test_data.csv'
svc_model_filename = 'svc_classif.pkl'
lr_model_filename = 'lr_classif.pkl'
rfc_model_filename = 'rfc_classif.pkl'
rfc_feat_imp_filename = 'rfc_feat_imp.png'
model_comp_result_chart_filename = 'method_comp_res.png'
nn_model_filename = 'nn1.pkl'
io = lib.io.IO()
viz = lib.viz.Viz()
nn = lib.nn.NN(io, viz)
cl = lib.cl.CL(io, viz)
# Read data
print "Reading train data..."
X, y = io.read_data(input_filename_x, input_filename_y)
y = io.shift_v(y, shift=-1)
print "Reading test data..."
test_x = io.read_data(test_input_filename, None)
print "There are " + str(len(X)) + " samples in the train set."
print "There are " + str(len(test_x)) + " samples in the test set."
test_x = np.matrix(test_x)
test_ids = range(1, len(test_x)+1)
# PCA etc.
X = cl.pca(np.matrix(X), 'pca_explained_variance.png').tolist()
test_x = cl.pca(test_x, None).tolist()
# Split data to train and validation set
# mini_batches
#ids, batches_x, batches_y = io.split_data(X, y, 100, 100)
val_ids, val_x, val_y = io.pick_set(X, y, 563)
train_ids, train_x, train_y = io.pick_set(X, y, 3800)
nn.initialize(train_x.shape[1], nn1=18, nn2=9, alpha=0.01) #, filename=nn_model_filename)
# Train
pred, proba, acc = nn.predict(train_x, train_y)
print("Train set classification accuray before training: %.4f"%acc)
nn.train(train_x, train_y, val_x, val_y, training_steps=100000)
nn.save_nn(nn_model_filename)
# validate
pred, proba, acc = nn.predict(train_x, train_y)
print("Train set classification accuray after training: %.4f"%acc)
pred, proba, acc = nn.predict(val_x, val_y)
print("Validation set classification accuray after training: %.4f"%acc)
# Draw some results
# viz.model_comp_results(results, model_comp_result_chart_filename)
# predict
pred_class, pred_proba, _ = nn.predict(test_x)
pred_class = io.shift_v(pred_class, shift=1)
# Output
io.write_classes('nn_classes_sub_result.csv', test_ids, pred_class)
io.write_probabilities('nn_probabilities_sub_result.csv', test_ids, pred_proba)
if __name__ == "__main__":
main(sys.argv[1:])