-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathkeras.alexnet.py
executable file
·70 lines (56 loc) · 1.94 KB
/
keras.alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
import keras
keras.backend.set_image_data_format('channels_first')
from keras.models import Sequential
from keras.layers import *
from keras.utils import np_utils
import numpy as np
import sys
try:
NUM_GPU = int(sys.argv[1])
except IndexError:
NUM_GPU = 1
batch_size = 64 * NUM_GPU
nb_classes = 1000
img_rows, img_cols = 224, 224
if keras.backend.image_data_format() == 'channels_first':
X_train = np.random.random((batch_size, 3, img_rows, img_cols)).astype('float32')
else:
X_train = np.random.random((batch_size, img_rows, img_cols, 3)).astype('float32')
Y_train = np.random.random((batch_size,)).astype('int32')
Y_train = np_utils.to_categorical(Y_train, nb_classes)
def gen():
while True:
yield (X_train, Y_train)
model = Sequential()
model.add(Convolution2D(64, 11, strides=4, padding='valid', input_shape=X_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=2))
model.add(Convolution2D(192, 5, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=2))
model.add(Convolution2D(384, 3, padding='same'))
model.add(Activation('relu'))
model.add(Convolution2D(256, 3, padding='same'))
model.add(Activation('relu'))
model.add(Convolution2D(256, 3, padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(3, 3), strides=2))
model.add(Flatten())
model.add(Dense(4096))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(4096))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
for l in model.layers:
print(l.input_shape, l.output_shape)
if NUM_GPU != 1:
model = keras.utils.multi_gpu_model(model, NUM_GPU)
# Let's train the model using RMSprop
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit_generator(gen(), epochs=100, steps_per_epoch=200)