-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
91 lines (72 loc) · 3.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from tlxzoo.datasets import DataLoaders
from tlxzoo.text.text_classification import TextClassification
from tlxzoo.module.bert.transform import BertTransform
import tensorlayerx as tlx
def valid(model, test_dataset):
model.set_eval()
metrics = tlx.metrics.Accuracy()
val_acc = 0
n_iter = 0
for index, (X_batch, y_batch) in enumerate(test_dataset):
_logits = model(**X_batch)
metrics.update(_logits, y_batch["labels"])
val_acc += metrics.result()
metrics.reset()
n_iter += 1
print(val_acc / n_iter)
class Trainer(tlx.model.Model):
def tf_train(
self, n_epoch, train_dataset, network, loss_fn, train_weights, optimizer, metrics, print_train_batch,
print_freq, test_dataset
):
import time
import tensorflow as tf
import numpy as np
for epoch in range(n_epoch):
start_time = time.time()
train_loss, train_acc, n_iter = 0, 0, 0
for X_batch, y_batch in train_dataset:
network.set_train()
with tf.GradientTape() as tape:
# compute outputs
_logits = network(**X_batch)
# _loss_ce = tf.reduce_mean(loss_fn(_logits, y_batch))
_loss_ce = loss_fn(_logits, **y_batch)
grad = tape.gradient(_loss_ce, train_weights)
optimizer.apply_gradients(zip(grad, train_weights))
train_loss += _loss_ce
if metrics:
metrics.update(_logits, y_batch["labels"])
train_acc += metrics.result()
metrics.reset()
else:
train_acc += np.mean(np.equal(np.argmax(_logits, 1), y_batch))
n_iter += 1
if print_train_batch:
print("Epoch {} of {} {} took {}".format(epoch + 1, n_epoch, n_iter, time.time() - start_time))
print(" train loss: {}".format(train_loss / n_iter))
print(" train acc: {}".format(train_acc / n_iter))
if epoch + 1 == 1 or (epoch + 1) % print_freq == 0:
print("Epoch {} of {} took {}".format(epoch + 1, n_epoch, time.time() - start_time))
print(" train loss: {}".format(train_loss / n_iter))
print(" train acc: {}".format(train_acc / n_iter))
valid(network, test_dataset)
model.save_weights("./demo/text/text_classification/bert/model.npz")
if __name__ == '__main__':
datasets = DataLoaders(per_device_train_batch_size=16,
per_device_eval_batch_size=16,
data_name="SST-2",
path="./data",
num_workers=0)
transform = BertTransform(vocab_file="./demo/text/text_classification/bert/vocab.txt", max_length=128)
datasets.register_transform_hook(transform)
print("train data:", len(datasets.train))
model = TextClassification("bert")
model.load_weights("./demo/text/text_classification/bert/model.npz")
optimizer = tlx.optimizers.Adam(lr=0.00001)
loss_fn = model.loss_fn
metric = tlx.metrics.Accuracy()
model = Trainer(network=model, loss_fn=loss_fn, optimizer=optimizer, metrics=metric)
model.train(n_epoch=3, train_dataset=datasets.train, test_dataset=datasets.test, print_freq=1,
print_train_batch=True)
model.save_weights("./demo/text/text_classification/bert/model.npz")