forked from datamllab/rlcard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_dmc.py
53 lines (43 loc) · 2.11 KB
/
run_dmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
''' An example of training a Deep Monte-Carlo (DMC) Agent on the environments in RLCard
'''
import os
import argparse
import torch
import rlcard
from rlcard.agents.dmc_agent import DMCTrainer
def train(args):
# Make the environment
env = rlcard.make(args.env)
# Initialize the DMC trainer
trainer = DMCTrainer(env,
load_model=args.load_model,
xpid=args.xpid,
savedir=args.savedir,
save_interval=args.save_interval,
num_actor_devices=args.num_actor_devices,
num_actors=args.num_actors,
training_device=args.training_device)
# Train DMC Agents
trainer.start()
if __name__ == '__main__':
parser = argparse.ArgumentParser("DMC example in RLCard")
parser.add_argument('--env', type=str, default='leduc-holdem',
choices=['blackjack', 'leduc-holdem', 'limit-holdem', 'doudizhu', 'mahjong', 'no-limit-holdem', 'uno', 'gin-rummy'])
parser.add_argument('--cuda', type=str, default='1')
parser.add_argument('--load_model', action='store_true',
help='Load an existing model')
parser.add_argument('--xpid', default='doudizhu',
help='Experiment id (default: doudizhu)')
parser.add_argument('--savedir', default='experiments/dmc_result',
help='Root dir where experiment data will be saved')
parser.add_argument('--save_interval', default=30, type=int,
help='Time interval (in minutes) at which to save the model')
parser.add_argument('--num_actor_devices', default=1, type=int,
help='The number of devices used for simulation')
parser.add_argument('--num_actors', default=5, type=int,
help='The number of actors for each simulation device')
parser.add_argument('--training_device', default=0, type=int,
help='The index of the GPU used for training models')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
train(args)