This repository has been archived by the owner on Jun 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 22
/
train_wgan.py
executable file
·354 lines (270 loc) · 12.8 KB
/
train_wgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import time
import os
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
from keras.models import Sequential
from keras.layers import Conv2D, Conv2DTranspose, Reshape, concatenate
from keras.layers import Flatten, BatchNormalization, Dense, Activation
from keras.layers.advanced_activations import LeakyReLU
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from keras.initializers import RandomNormal
import keras.backend as K
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
# Here is where we will load the dataset stored in dataset_path. In this script
# we will use the Caltech-UCSD Birds-200-2011 dataset which includes 11788
# images from 200 different birds. We will feed the images without applying
# the provided bounding boxes from the dataset. The data will only be resized
# and normalized. Keras ImageDataGenerator will be used for loading the dataset
def load_dataset(dataset_path, batch_size, image_shape):
dataset_generator = ImageDataGenerator()
dataset_generator = dataset_generator.flow_from_directory(
dataset_path, target_size=(image_shape[0], image_shape[1]),
batch_size=batch_size,
class_mode=None)
return dataset_generator
# Let's define our Wasserstein Loss function. We apply the mean in order to be
# able to compare outputs with different batch sizes
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
# Creates the critic model. This model tries to classify images as real
# or fake. In WGAN contrarilly to DCGAN, the output does not need to be a probability
# that's why it is called a crtitc, because it does not explicitly classify as fake or
# real.
# Important note: in the original pytorch implementation of the artice, the biases
# are set to false, here I left them as default.
def construct_critic(image_shape):
# weights need to be initialized with close values near zero to avoid
# clipping
weights_initializer = RandomNormal(mean=0., stddev=0.01)
critic = Sequential()
critic.add(Conv2D(filters=64, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer,
input_shape=(image_shape)))
critic.add(LeakyReLU(0.2))
critic.add(Conv2D(filters=128, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
critic.add(BatchNormalization(momentum=0.5))
critic.add(LeakyReLU(0.2))
critic.add(Conv2D(filters=256, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
critic.add(BatchNormalization(momentum=0.5))
critic.add(LeakyReLU(0.2))
critic.add(Conv2D(filters=512, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
critic.add(BatchNormalization(momentum=0.5))
critic.add(LeakyReLU(0.2))
critic.add(Flatten())
# We output two layers, one witch predicts the class and other that
# tries to figure if image is fake or not
critic.add(Dense(units=1, activation=None))
optimizer = RMSprop(lr=0.00005)
critic.compile(loss=wasserstein_loss,
optimizer=optimizer,
metrics=None)
return critic
# Creates the generator model. This model has an input of random noise and
# generates an image that will try mislead the critic.
# Important note: in the original pytorch implementation of the artice, the biases
# are set to false, here I left them as default.
def construct_generator():
weights_initializer = RandomNormal(mean=0., stddev=0.01)
generator = Sequential()
generator.add(Dense(units=4 * 4 * 512,
kernel_initializer=weights_initializer,
input_shape=(1, 1, 100)))
generator.add(Reshape(target_shape=(4, 4, 512)))
generator.add(BatchNormalization(momentum=0.5))
generator.add(Activation('relu'))
generator.add(Conv2DTranspose(filters=256, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
generator.add(BatchNormalization(momentum=0.5))
generator.add(Activation('relu'))
generator.add(Conv2DTranspose(filters=128, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
generator.add(BatchNormalization(momentum=0.5))
generator.add(Activation('relu'))
generator.add(Conv2DTranspose(filters=64, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
generator.add(BatchNormalization(momentum=0.5))
generator.add(Activation('relu'))
generator.add(Conv2DTranspose(filters=3, kernel_size=(5, 5),
strides=(2, 2), padding='same',
data_format='channels_last',
kernel_initializer=weights_initializer))
generator.add(Activation('tanh'))
optimizer = RMSprop(lr=0.00005)
generator.compile(loss=wasserstein_loss,
optimizer=optimizer,
metrics=None)
return generator
# Function that allows writing the loss to tensorboard to visualize the
# plots of the losses. In tensorboard you will have 5 different loss plots
# shown correspondent to critic fake loss, critic real loss, generator loss,
# Critic Real los - Critic Fake Loss and Critic Real Loss + Critic Fake loss
def write_to_tensorboard(generator_step, summary_writer,
losses):
summary = tf.Summary()
value = summary.value.add()
value.simple_value = losses[1]
value.tag = 'Critic Real Loss'
value = summary.value.add()
value.simple_value = losses[2]
value.tag = 'Critic Fake Loss'
value = summary.value.add()
value.simple_value = losses[3]
value.tag = 'Generator Loss'
value = summary.value.add()
value.simple_value = losses[1] - losses[2]
value.tag = 'Critic Loss (D_real - D_fake)'
value = summary.value.add()
value.simple_value = losses[1] + losses[2]
value.tag = 'Critic Loss (D_fake + D_real)'
summary_writer.add_summary(summary, generator_step)
summary_writer.flush()
# Displays a figure of the generated images and saves them in as .png image
def save_generated_images(generated_images, generator_iteration):
# Create the plot
plt.figure(figsize=(8, 8), num=1)
gs1 = gridspec.GridSpec(8, 8)
gs1.update(wspace=0, hspace=0)
for i in range(64):
ax1 = plt.subplot(gs1[i])
ax1.set_aspect('equal')
image = generated_images[i, :, :, :]
image += 1
image *= 127.5
fig = plt.imshow(image.astype(np.uint8))
plt.axis('off')
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False)
plt.tight_layout()
save_name = 'generated images/generatedSamples_genIter' + \
str(generator_iteration + 1) + '.png'
plt.savefig(save_name, bbox_inches='tight', pad_inches=0)
plt.pause(0.0000000001)
plt.show()
# Main train function
def train_wgan(batch_size, epochs, image_shape, dataset_path):
# Build the adversarial model that consists in the generator output
# connected to the critic
generator = construct_generator()
critic = construct_critic(image_shape)
gan = Sequential()
# Only false for the adversarial model
critic.trainable = False
gan.add(generator)
gan.add(critic)
optimizer = RMSprop(lr=0.00005)
gan.compile(loss=wasserstein_loss,
optimizer=optimizer,
metrics=None)
# Create a dataset Generator with help of keras
dataset_generator = load_dataset(dataset_path, batch_size, image_shape)
# 11788 is the total number of images on the bird dataset
number_of_batches = int(11788 / batch_size)
# Tensorboard log variable
summary_writer = tf.summary.FileWriter('./logs/WGAN')
# Create the plot that will show the losses
plt.ion()
# Variables used for loss saving
generator_iterations = 0
d_loss = 0
d_real = 0
d_fake = 0
g_loss = 0
# Let's train the WGAN for n epochs
for epoch in range(epochs):
current_batch = 0
while current_batch < number_of_batches:
start_time = time.time()
# Just like the v2 version of paper, in the first 25 epochs, the critic
# is updated 100 times for each generator update. Occasionally (each 500
# epochs this is repeated). In the other epochs the default value is 5
if generator_iterations < 25 or (generator_iterations + 1) % 500 == 0:
critic_iterations = 100
else:
critic_iterations = 5
# Update the critic a number of critic iterations
for critic_iteration in range(critic_iterations):
if current_batch > number_of_batches:
break
real_images = dataset_generator.next()
real_images /= 127.5
real_images -= 1
current_batch += 1
# The last batch is smaller than the other ones, so we need to
# take that into account
current_batch_size = real_images.shape[0]
# Generate noise
noise = np.random.normal(0, 1,
size=(current_batch_size,) + (1, 1, 100))
# Generate images
generated_images = generator.predict(noise)
# Add some noise to the labels that will be fed to the critic
real_y = np.ones(current_batch_size)
fake_y = np.ones(current_batch_size) * -1
# Let's train the critic
critic.trainable = True
# Clip the weights to small numbers near zero
for layer in critic.layers:
weights = layer.get_weights()
weights = [np.clip(w, -0.01, 0.01) for w in weights]
layer.set_weights(weights)
d_real = critic.train_on_batch(real_images, real_y)
d_fake = critic.train_on_batch(generated_images, fake_y)
d_loss = d_real - d_fake
# numpy array that will store the losses to be passed to tensorboard
losses = np.empty(shape=1)
losses = np.append(losses, d_real)
losses = np.append(losses, d_fake)
# Update the generator
critic.trainable = False
noise = np.random.normal(0, 1,
size=(current_batch_size,) + (1, 1, 100))
# We try to mislead the critic by giving the opposite labels
fake_y = np.ones(current_batch_size)
g_loss = gan.train_on_batch(noise, fake_y)
losses = np.append(losses, g_loss)
# Each 100 generator iterations show and save images
if ((generator_iterations + 1) % 100 == 0):
noise = np.random.normal(0, 1, size=(64,) + (1, 1, 100))
generated_images = generator.predict(noise)
save_generated_images(generated_images, generator_iterations)
# Update tensorboard plots
write_to_tensorboard(generator_iterations, summary_writer, losses)
time_elapsed = time.time() - start_time
print('[%d/%d][%d/%d][%d] Loss_D: %f Loss_G: %f Loss_D_real: %f Loss_D_fake %f - %f s'
% (epoch, epochs, current_batch, number_of_batches, generator_iterations,
d_loss, g_loss, d_real, d_fake, time_elapsed))
generator_iterations += 1
if (epoch + 1) % 5 == 0:
critic.trainable = True
generator.save('models/generator_epoch' + str(epoch) + '.hdf5')
critic.save('models/critic_epoch' + str(epoch) + '.hdf5')
def main():
dataset_path = '/media/tfreitas/LENOVO/Datasets/CUB_200_2011/CUB_200_2011/images/'
batch_size = 64
image_shape = (64, 64, 3)
epochs = 5000
train_wgan(batch_size, epochs,
image_shape, dataset_path)
K.clear_session()
if __name__ == "__main__":
main()