Description
System information
The same as in tensorflow/tensorflow#33531
Describe the current behavior
I follow https://www.tensorflow.org/tensorboard/tensorboard_profiling_keras but additionally wrap into a tf.distribute.MirroredStrategy
scope. I don't see any /job/...
items in the PROFILE section of TensorBoard. I see the following that is really non-informative:
Describe the expected behavior
The expected result is the nice data input pipeline and training step split. With IteratorGetNextSync
and friends instead of __inference_distributed_function_191638
.
Code to reproduce the issue
The same as https://github.com/tensorflow/tensorboard/blob/master/docs/tensorboard_profiling_keras.ipynb but with the MirroredStrategy.
Full source code
from datetime import datetime
import functools
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
import numpy as np
print("TensorFlow version: ", tf.__version__)
BATCH_NORM_DECAY = 0.997
BATCH_NORM_EPSILON = 1e-5
L2_WEIGHT_DECAY = 2e-4
def identity_building_block(input_tensor,
kernel_size,
filters,
stage,
block,
training=None):
"""The identity block is the block that has no conv layer at shortcut.
Arguments:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: current block label, used for generating layer names
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
Output tensor for the block.
"""
filters1, filters2 = filters
if tf.keras.backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = tf.keras.layers.Conv2D(filters1, kernel_size,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = tf.keras.layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2a',
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(
x, training=training)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters2, kernel_size,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = tf.keras.layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2b',
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(
x, training=training)
x = tf.keras.layers.add([x, input_tensor])
x = tf.keras.layers.Activation('relu')(x)
return x
def conv_building_block(input_tensor,
kernel_size,
filters,
stage,
block,
strides=(2, 2),
training=None):
"""A block that has a conv layer at shortcut.
Arguments:
input_tensor: input tensor
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: current block label, used for generating layer names
strides: Strides for the first conv layer in the block.
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
Output tensor for the block.
Note that from stage 3,
the first conv layer at main path is with strides=(2, 2)
And the shortcut should have strides=(2, 2) as well
"""
filters1, filters2 = filters
if tf.keras.backend.image_data_format() == 'channels_last':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = tf.keras.layers.Conv2D(filters1, kernel_size, strides=strides,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2a')(input_tensor)
x = tf.keras.layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2a',
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(
x, training=training)
x = tf.keras.layers.Activation('relu')(x)
x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '2b')(x)
x = tf.keras.layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2b',
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(
x, training=training)
shortcut = tf.keras.layers.Conv2D(filters2, (1, 1), strides=strides,
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name=conv_name_base + '1')(input_tensor)
shortcut = tf.keras.layers.BatchNormalization(
axis=bn_axis, name=bn_name_base + '1',
momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)(
shortcut, training=training)
x = tf.keras.layers.add([x, shortcut])
x = tf.keras.layers.Activation('relu')(x)
return x
def resnet_block(input_tensor,
size,
kernel_size,
filters,
stage,
conv_strides=(2, 2),
training=None):
"""A block which applies conv followed by multiple identity blocks.
Arguments:
input_tensor: input tensor
size: integer, number of constituent conv/identity building blocks.
A conv block is applied once, followed by (size - 1) identity blocks.
kernel_size: default 3, the kernel size of
middle conv layer at main path
filters: list of integers, the filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
conv_strides: Strides for the first conv layer in the block.
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
Output tensor after applying conv and identity blocks.
"""
x = conv_building_block(input_tensor, kernel_size, filters, stage=stage,
strides=conv_strides, block='block_0',
training=training)
for i in range(size - 1):
x = identity_building_block(x, kernel_size, filters, stage=stage,
block='block_%d' % (i + 1), training=training)
return x
def resnet(num_blocks, classes=10, training=None):
"""Instantiates the ResNet architecture.
Arguments:
num_blocks: integer, the number of conv/identity blocks in each block.
The ResNet contains 3 blocks with each block containing one conv block
followed by (layers_per_block - 1) number of idenity blocks. Each
conv/idenity block has 2 convolutional layers. With the input
convolutional layer and the pooling layer towards the end, this brings
the total size of the network to (6*num_blocks + 2)
classes: optional number of classes to classify images into
training: Only used if training keras model with Estimator. In other
scenarios it is handled automatically.
Returns:
A Keras model instance.
"""
input_shape = (32, 32, 3)
img_input = layers.Input(shape=input_shape)
if backend.image_data_format() == 'channels_first':
x = layers.Lambda(lambda x: backend.permute_dimensions(x, (0, 3, 1, 2)),
name='transpose')(img_input)
bn_axis = 1
else: # channel_last
x = img_input
bn_axis = 3
x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(x)
x = tf.keras.layers.Conv2D(16, (3, 3),
strides=(1, 1),
padding='valid',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name='conv1')(x)
x = tf.keras.layers.BatchNormalization(axis=bn_axis, name='bn_conv1',
momentum=BATCH_NORM_DECAY,
epsilon=BATCH_NORM_EPSILON)(
x, training=training)
x = tf.keras.layers.Activation('relu')(x)
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[16, 16],
stage=2, conv_strides=(1, 1), training=training)
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[32, 32],
stage=3, conv_strides=(2, 2), training=training)
x = resnet_block(x, size=num_blocks, kernel_size=3, filters=[64, 64],
stage=4, conv_strides=(2, 2), training=training)
x = tf.keras.layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = tf.keras.layers.Dense(classes, activation='softmax',
kernel_initializer='he_normal',
kernel_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
bias_regularizer=
tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
name='fc10')(x)
inputs = img_input
# Create model.
model = tf.keras.models.Model(inputs, x, name='resnet56')
return model
resnet20 = functools.partial(resnet, num_blocks=3)
resnet32 = functools.partial(resnet, num_blocks=5)
resnet56 = functools.partial(resnet, num_blocks=9)
resnet110 = functools.partial(resnet, num_blocks=18)
cifar_builder = tfds.builder('cifar10')
cifar_builder.download_and_prepare()
HEIGHT = 32
WIDTH = 32
NUM_CHANNELS = 3
NUM_CLASSES = 10
BATCH_SIZE = 128
def preprocess_data(record):
image = record['image']
label = record['label']
# Resize the image to add four extra pixels on each side.
image = tf.image.resize_with_crop_or_pad(
image, HEIGHT + 8, WIDTH + 8)
# Randomly crop a [HEIGHT, WIDTH] section of the image.
image = tf.image.random_crop(image, [HEIGHT, WIDTH, NUM_CHANNELS])
# Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image)
# Subtract off the mean and divide by the variance of the pixels.
image = tf.image.per_image_standardization(image)
label = tf.compat.v1.sparse_to_dense(label, (NUM_CLASSES,), 1)
return image, label
train_data = cifar_builder.as_dataset(split=tfds.Split.TRAIN)
train_data = train_data.repeat()
train_data = train_data.map(
lambda value: preprocess_data(value))
train_data = train_data.shuffle(1024)
train_data = train_data.batch(BATCH_SIZE)
with tf.distribute.MirroredStrategy().scope():
model = resnet20(classes=NUM_CLASSES)
model.compile(optimizer='SGD',
loss='categorical_crossentropy',
metrics=['categorical_accuracy'])
log_dir="logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, profile_batch = 3)
model.fit(train_data,
steps_per_epoch=20,
epochs=5,
callbacks=[tensorboard_callback])
Other info / logs
TensorBoard logs: logs.tar.gz