-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clip_accelerator.py
241 lines (215 loc) · 13.3 KB
/
train_clip_accelerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# -*- coding: utf-8 -*-
# @Time : 2024/12/13 10:52 上午
# @Author : senwang
# @Email : [email protected]
# @File : train_clip_predict.py
# @Project : intime_intelligent_election
# @Software: PyCharm
'''
# 通过pip安装
pip install cn_clip
# 或者从源代码安装
cd Chinese-CLIP
pip install -e .
参考:https://github.com/OFA-Sys/Chinese-CLIP
'''
import time
import os
os.environ['HF_ENDPOINT']='https://hf-mirror.com' # 后面发现在dsw还是不能用,后面把.cache下的打包过去,还是报错requests.exceptions.ConnectTimeout: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /jinaai/jina-clip-v2/resolve/main/jinaai/jina-clip-implementation--configuration_clip.py, 升级下transformers解决4.25.1 -> 4.46.3无果,最终多跑几次clip_test.py就可以下了,有一个配置文件会下到~/.cache/huggingface/transformers/jinaai/jina-clip-implementation
# os.chdir(os.path.dirname(__file__))
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
# import timm
# print([m for m in timm.list_models() if 'dino' in m])
from PIL import Image
import numpy as np
# from cn_clip.clip import load_from_name, tokenize
import torch.optim as optim
import sys
curdir = os.path.dirname(__file__)
sys.path.append(os.path.join(curdir, '../../'))
from dataset_imageretrival import ImageTextDataset
from transformers import AutoModel, AutoImageProcessor, AutoTokenizer
from huggingface_hub import snapshot_download
import torch.nn.functional as F
import tqdm
from torch.optim.lr_scheduler import SequentialLR, LinearLR, CosineAnnealingLR
from transformers.models.clip.modeling_clip import clip_loss
from accelerate import Accelerator
# device = torch.device("cpu") # debug 用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class JinaClipTrainer:
def __init__(self, learning_rate_txt=5e-5, learning_rate_img=5e-6, learning_rate_scale=1e-4, batch_size=5, gradient_accumulation_steps=8):
# 初始化 Accelerator# 会自动检测可用的设备, 也可以通果命令行配置accelerate config
self.accelerator = Accelerator(
mixed_precision= 'no', # 'bf16', # senwang 默认fp16 设置了 mixed_precision='bf16',这会导致额外的内存开销,报outofmemory
gradient_accumulation_steps=gradient_accumulation_steps
)
self.gradient_accumulation_steps = gradient_accumulation_steps
# Initialize CLIP model
model_name = "jinaai/jina-clip-v2"
### 指定版本
commit_hash = "ca8657a" # 示例提交哈希值
access_token = 'your access token'
self.clip_model = AutoModel.from_pretrained(model_name, trust_remote_code=True, revision=commit_hash, use_auth_token=access_token) # .to(device) # model_name
'''
### 不指定版本,最新版本
clip_model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(device) # model_name dtype=bfloat16
image_processor = AutoImageProcessor.from_pretrained(model_name, trust_remote_code=True) # from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name) # from_pretrained(model_name)
'''
# clip_model = clip_model.float() # senwang add. convert to float32, 加了这个训练,直接显存就不够了
# 加载预处理器([短边resize为512, centercrop512, totensor, Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
# Freeze CLIP model parameters, 如果没什么特别需要freeze的参数,其实以下两件=句也可不用
for param in self.clip_model.parameters():
param.requires_grad = True
self.image_processor = AutoImageProcessor.from_pretrained(model_name, trust_remote_code=True, revision=commit_hash, use_auth_token=access_token) # from_pretrained(model_name)
self.tokenizer = AutoTokenizer.from_pretrained(model_name, revision=commit_hash, use_auth_token=access_token) # from_pretrained(model_name)
# self.optimizer = torch.optim.AdamW(filter(lambda p: p.requires_grad, clip_model.parameters()), lr=learning_rate, betas=(0.9,0.98)) # for CombinedModelClipOnly
self.optimizer = optim.AdamW([
{'params': self.clip_model.text_model.parameters(), 'lr': learning_rate_txt},
{'params': self.clip_model.vision_model.parameters(), 'lr': learning_rate_img},
{'params': self.clip_model.logit_scale, 'lr': learning_rate_scale}
],
betas=(0.9,0.98)) # for CombinedModelClipOnly
print("Optimizer param groups:")
opt_params_id = set(id(p) for p in self.optimizer.param_groups[0]['params'])
for name, param in self.clip_model.named_parameters():
if 'logit_scale' in name:
print(f"###########: {name}, 形状: {param.shape}")
if param.requires_grad and id(param) in opt_params_id:
print(f"需要优化的参数名: {name}, 形状: {param.shape}")
# 定义图像和文本的预处理函数
def preprocess_image(self, image):
return self.image_processor(image, return_tensors="pt").pixel_values.squeeze(0)
def preprocess_text(self, text):
return self.tokenizer(text, return_tensors="pt", padding=True, truncation=True).input_ids
def evaluate_model(self, dataloader):
self.clip_model.eval()
total_loss = 0
correct = 0
total = 0
with torch.no_grad():
for i, dataiter in enumerate(dataloader):
# dataloader 经过 accelerator.prepare() 后,数据会自动被放到正确的设备上
images, texts = dataiter
# images = images.to(device)
texts = self.preprocess_text(texts).to(self.accelerator.device) # .to(device)
output = self.clip_model(input_ids=texts, pixel_values=images, return_loss=True, return_dict=True)
loss = output.loss
total_loss += loss.item()
# 获取预测结果
logits_per_text = output.logits_per_text
_, predicted = torch.max(logits_per_text, dim=1)
correct += (predicted == torch.arange(len(texts), device=self.accelerator.device)).sum().item()
total += len(texts)
accuracy = correct / total
average_loss = total_loss / len(dataloader)
return average_loss, accuracy
def train(self, train_dataloader, test_dataloader, num_epochs, save_dir):
# 定义 warmup 调度器
warmup_epochs = 5
scheduler_warmup = LinearLR(self.optimizer, start_factor=0.01, end_factor=1.0, total_iters=warmup_epochs)
scheduler_cosine = CosineAnnealingLR(self.optimizer, T_max=num_epochs - warmup_epochs, eta_min=1e-7) # optimer里面设置的学习率为初始学习率,eta_min为最终学习率,T_max为余弦周期的最大步数,
# 组合调度器
scheduler = SequentialLR(self.optimizer, schedulers=[scheduler_warmup, scheduler_cosine], milestones=[warmup_epochs])
# Prepare the model, optimizer, and data loader for mixed precision, 会把数据都统一放在self.accelerator.device上
self.clip_model, self.optimizer, dataloader, test_dataloader = self.accelerator.prepare(self.clip_model, self.optimizer, train_dataloader, test_dataloader)
global_best_testloss = float('inf')
for epoch in range(0, num_epochs):
tic = time.time()
self.clip_model.train()
running_loss = 0.0
total_iter = len(dataloader)
for i, dataiter in enumerate(dataloader):
with self.accelerator.accumulate(self.clip_model): # 在这下面,会自动处理梯度累积,不用手动判断梯度累积
images, texts = dataiter
# images = images.to(device)
texts = self.preprocess_text(texts).to(self.accelerator.device) # .to(device)
output = self.clip_model(input_ids=texts, pixel_values=images, return_loss=True, return_dict=True)
loss = output.loss
# 反向传播
self.accelerator.backward(loss)
if self.accelerator.sync_gradients: # 标志表示是否到达了需要同步梯度的时候(即完成了累积步数)
self.accelerator.clip_grad_norm_(self.clip_model.parameters(), 1.0)
self.optimizer.step()
self.optimizer.zero_grad()
running_loss += loss.item()
print(f'iter {i}/{total_iter}', 'loss:', loss.item())
scheduler.step()
# 打印当前学习率(每个epoch)
for param_group in self.optimizer.param_groups:
current_lr = param_group['lr']
print(
f'Epoch {epoch + 1}/{num_epochs}, Learning Rate: {current_lr:.9f}')
epoch_loss = running_loss / len(dataloader)
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}")
# 在每个epoch结束后评估测试集
test_loss, test_acc = self.evaluate_model(test_dataloader)
print('one epoch take time:', time.time() - tic)
# # 保存模型
save_path = os.path.join(save_dir, f'epoch_{epoch + 1}_trainloss_{epoch_loss}_testloss_{test_loss}_testacc_{test_acc}.pth')
# torch.save(self.clip_model.state_dict(), save_path)
self.accelerator.save(self.accelerator.unwrap_model(self.clip_model).state_dict(), save_path) # 只保存模型权重
print(f"Model saved to {save_path}")
if test_loss < global_best_testloss:
global_best_testloss = test_loss
checkpoint = {
'epoch': epoch + 1,
'model_state_dict': self.accelerator.unwrap_model(self.clip_model).state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'loss': epoch_loss,
}
save_path = os.path.join(save_dir, f'best_loss_{test_loss}.pth')
# torch.save(checkpoint, save_path)
self.accelerator.save(checkpoint, save_path)
print(f"Best model saved to {save_path}")
print("Training finished!")
def inference(self):
test_dataset = ImageTextDataset(transform_image=self.preprocess_image, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=5, shuffle=False)
test_loss, test_acc = self.evaluate_model(test_dataloader)
print(f"origin Test Loss: {test_loss}")
# 加载最佳模型
# 加载 checkpoint
checkpoint = torch.load("weights/ClipModelImageRetrieval/last.pth")
# 恢复模型状态
self.clip_model.load_state_dict(checkpoint['model_state_dict'])
# # 恢复优化器状态
# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# # 恢复调度器状态
# scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
# clip_model.load_state_dict(torch.load("weights/ClipModelImageRetrieval/epoch_13_trainloss_6.895833333333333_testloss_11.541666666666666_testacc_0.2727272727272727.pth"))
# 在测试集上评估
test_loss, test_acc = self.evaluate_model(test_dataloader)
print(f"Test Loss: {test_loss}")
def main():
# 配置参数
batch_size = 5 # 8 # 32 # 4
gradient_accumulation_steps = 24
num_epochs = 100
# learning_rate_base = 5e-5 #
learning_rate_txt = 5e-5 #
learning_rate_img = 5e-6 # 视觉特征的提取比文本特征提取更复杂,需要更谨慎的调整
learning_rate_scale = 1e-4 # logit_scale的学习率
save_dir = os.path.join(curdir, 'weights/ClipModelImageRetrieval') # 'weights/weights_combinemodel_jina_clip_v2_mj_only' # 'weights/weights_combinemodel_jinjiav3' # './weights_vit224_white_fillsquare_p_0.0001' # weights_vit224_white_fillsquare_p:白底图不改变人物的长宽比,采用大于3的投票概率为分数 './weights_vit224_white_fillsquare'
os.makedirs(save_dir, exist_ok=True)
# 创建训练器
trainer = JinaClipTrainer(
learning_rate_txt=learning_rate_txt,
learning_rate_img=learning_rate_img,
learning_rate_scale=learning_rate_scale,
batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps
)
train_dataset = ImageTextDataset(transform_image=trainer.preprocess_image, is_train=True)
# dataset.img_names_test = dataset.img_names_test[2:4] # senwang just for test
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
test_dataset = ImageTextDataset(transform_image=trainer.preprocess_image, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 由于测试集同一个spuid等数据相邻,所以用了shffle=True
trainer.train(train_dataloader, test_dataloader, num_epochs, save_dir)
if __name__ == '__main__':
main()
### 最终还是用了train_clip_accelerator.py