-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathriemersma.go
300 lines (260 loc) · 6.94 KB
/
riemersma.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//
// riemersma.go
// Copyright (C) 2024 Teerapap Changwichukarn <[email protected]>
//
// Distributed under terms of the MIT license.
//
package riemersma
import (
"image"
"image/color"
"image/draw"
"math"
)
// Riemersma is a [draw.Drawer] (similar to [draw.FloydSteinberg]) which does Riemersma dithering to src image and draws result on dst image
var Riemersma = Drawer{}
type Drawer struct{}
func (dr Drawer) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
op := NewOperation(16, 16)
op.Draw(dst, r, src, sp)
}
// Riemersma Dither Operation. It is not resuable.
type Op struct {
Ratio float64 // weight ratio between youngest pixel and oldest pixel
Weights []float64 // pre-calculated weights
errors errorList // most recent quantization errors
x, y int // current dithering pixel
}
// Create new Riemersma dither operation with specific queueSize and ratio
// queueSize is the number of most recent pixel quantization errors to remember
// ratio is weight ratio between youngest pixel and oldest pixel
func NewOperation(queueSize int, ratio float64) *Op {
return &Op{
Ratio: ratio,
Weights: initWeights(queueSize, ratio),
errors: newErrorList(queueSize),
}
}
func initWeights(size int, ratio float64) []float64 {
weights := make([]float64, size)
m := math.Exp(math.Log(ratio) / float64(size-1))
v := 1.0
for i := 0; i < size; i++ {
weights[i] = math.Round(v)
v = v * m
}
return weights
}
func (rs *Op) Draw(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) {
image := NewImage(dst, r, src, sp)
rs.Dither(image)
}
func (rs *Op) Dither(image Image) {
/* determine the required order of the Hilbert curve */
imgSize := image.Size()
sideLength := max(imgSize.X, imgSize.Y)
level := log2(sideLength)
if (1 << level) < sideLength {
level += 1
}
if level > 0 {
rs.hilbertLevel(level, dirUP, image)
}
rs.move(dirNONE, image)
}
func (rs *Op) hilbertLevel(level int, dir hilbertDirection, image Image) {
if level == 1 {
switch dir {
case dirLEFT:
rs.move(dirRIGHT, image)
rs.move(dirDOWN, image)
rs.move(dirLEFT, image)
case dirRIGHT:
rs.move(dirLEFT, image)
rs.move(dirUP, image)
rs.move(dirRIGHT, image)
case dirUP:
rs.move(dirDOWN, image)
rs.move(dirRIGHT, image)
rs.move(dirUP, image)
case dirDOWN:
rs.move(dirUP, image)
rs.move(dirLEFT, image)
rs.move(dirDOWN, image)
}
} else {
switch dir {
case dirLEFT:
rs.hilbertLevel(level-1, dirUP, image)
rs.move(dirRIGHT, image)
rs.hilbertLevel(level-1, dirLEFT, image)
rs.move(dirDOWN, image)
rs.hilbertLevel(level-1, dirLEFT, image)
rs.move(dirLEFT, image)
rs.hilbertLevel(level-1, dirDOWN, image)
case dirRIGHT:
rs.hilbertLevel(level-1, dirDOWN, image)
rs.move(dirLEFT, image)
rs.hilbertLevel(level-1, dirRIGHT, image)
rs.move(dirUP, image)
rs.hilbertLevel(level-1, dirRIGHT, image)
rs.move(dirRIGHT, image)
rs.hilbertLevel(level-1, dirUP, image)
case dirUP:
rs.hilbertLevel(level-1, dirLEFT, image)
rs.move(dirDOWN, image)
rs.hilbertLevel(level-1, dirUP, image)
rs.move(dirRIGHT, image)
rs.hilbertLevel(level-1, dirUP, image)
rs.move(dirUP, image)
rs.hilbertLevel(level-1, dirRIGHT, image)
case dirDOWN:
rs.hilbertLevel(level-1, dirRIGHT, image)
rs.move(dirUP, image)
rs.hilbertLevel(level-1, dirDOWN, image)
rs.move(dirLEFT, image)
rs.hilbertLevel(level-1, dirDOWN, image)
rs.move(dirDOWN, image)
rs.hilbertLevel(level-1, dirLEFT, image)
}
}
}
func (rs *Op) move(dir hilbertDirection, image Image) {
size := image.Size()
numChannels := image.ColorNumChannels()
/* dither the current pixel */
if rs.x >= 0 && rs.x < size.X && rs.y >= 0 && rs.y < size.Y {
newError := image.DitherPixel(rs.x, rs.y, rs.AccumulatedError(numChannels))
rs.errors.Rotate(newError)
}
/* move to the next pixel */
switch dir {
case dirLEFT:
rs.x--
case dirRIGHT:
rs.x++
case dirUP:
rs.y--
case dirDOWN:
rs.y++
}
}
func (rs *Op) AccumulatedError(numChannel int) ColorError {
acc := make(ColorError, numChannel)
for i := 0; i < rs.errors.Size(); i++ {
err := rs.errors.Get(i)
w := rs.Weights[i]
for j := 0; j < numChannel; j++ {
if err == nil { // error is zero
continue
}
acc[j] += err[j] * w
}
}
for j := 0; j < numChannel; j++ {
acc[j] /= rs.Ratio
}
return acc
}
type Image interface {
Size() image.Point // image size
ColorNumChannels() int // number of color channels
DitherPixel(x int, y int, accErr ColorError) ColorError // Dither pixel with accumulated error
}
type anyImage struct {
dst draw.Image
dp image.Point
src image.Image
sp image.Point
size image.Point
numChannels int
}
func NewImage(dst draw.Image, r image.Rectangle, src image.Image, sp image.Point) Image {
srcSize := src.Bounds().Max.Sub(sp)
imgSize := image.Pt(min(srcSize.X, r.Dx()), min(srcSize.Y, r.Dy()))
return anyImage{
dst: dst,
dp: r.Min,
src: src,
sp: sp,
size: imgSize,
numChannels: 4,
}
}
func (img anyImage) Size() image.Point {
return img.size
}
func (img anyImage) ColorNumChannels() int {
return img.numChannels
}
func (img anyImage) DitherPixel(x int, y int, accErr ColorError) ColorError {
// Convert src color to non-alpha-premultiplied 64-bit color
sc := color.NRGBA64Model.Convert(img.src.At(img.sp.X+x, img.sp.Y+y)).(color.NRGBA64)
// Adjust src color with accummulated quantization errors
nc := color.NRGBA64{
R: clamp(int32(sc.R) + int32(math.Round(accErr[0]))),
G: clamp(int32(sc.G) + int32(math.Round(accErr[1]))),
B: clamp(int32(sc.B) + int32(math.Round(accErr[2]))),
A: clamp(int32(sc.A) + int32(math.Round(accErr[3]))),
}
// Set new color to destination. The color will be quantized.
img.dst.Set(img.dp.X+x, img.dp.Y+y, nc)
// Convert src color to non-alpha-premultiplied 64-bit color
dc := color.NRGBA64Model.Convert(img.dst.At(img.dp.X+x, img.dp.Y+y)).(color.NRGBA64)
return ColorError{
float64(sc.R) - float64(dc.R),
float64(sc.G) - float64(dc.G),
float64(sc.B) - float64(dc.B),
float64(sc.A) - float64(dc.A),
}
}
func clamp(i int32) uint16 {
if i < 0 {
return 0
}
if i > 0xffff {
return 0xffff
}
return uint16(i)
}
func log2(value int) int {
result := 0
for value > 1 {
value = value >> 1
result += 1
}
return result
}
type hilbertDirection int
const (
dirNONE = iota
dirUP
dirLEFT
dirDOWN
dirRIGHT
)
// color quantization errors for each channel
type ColorError []float64
type errorList struct {
err []ColorError
head int
}
func newErrorList(size int) errorList {
return errorList{
err: make([]ColorError, size),
head: 0,
}
}
func (el errorList) Get(i int) ColorError {
return el.err[(el.head+i)%len(el.err)]
}
func (el errorList) Size() int {
return len(el.err)
}
func (el *errorList) Rotate(val ColorError) {
el.err[el.head] = val
el.head += 1
if el.head >= len(el.err) {
el.head = 0
}
}