forked from subodh-malgonde/semantic-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
450 lines (352 loc) · 19.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import os.path
import tensorflow as tf
import helper
import warnings
from distutils.version import LooseVersion
import project_tests as tests
import random
import time
from tqdm import *
import math
from glob import glob
from sklearn.model_selection import train_test_split
import shutil
import argparse
from datetime import datetime
import pickle
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
KEEP_PROB = 1.0
LEARNING_RATE = 0.06
TRANSFER_LEARNING_MODE = False
CONTINUE_TRAINING = False
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
def load_vgg(sess, vgg_path):
"""
Load Pretrained VGG Model into TensorFlow.
:param sess: TensorFlow Session
:param vgg_path: Path to vgg folder, containing "variables/" and "saved_model.pb"
:return: Tuple of Tensors from VGG model (image_input, keep_prob, layer3_out, layer4_out, layer7_out)
"""
# Use tf.saved_model.loader.load to load the model and weights
vgg_tag = 'vgg16'
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
vgg_layer3_out_tensor_name = 'layer3_out:0'
vgg_layer4_out_tensor_name = 'layer4_out:0'
vgg_layer7_out_tensor_name = 'layer7_out:0'
tf.saved_model.loader.load(sess, ["vgg16"], vgg_path)
graph = tf.get_default_graph()
vgg_input_tensor = graph.get_tensor_by_name(vgg_input_tensor_name)
vgg_keep_prob_tensor = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
vgg_layer3_out_tensor = graph.get_tensor_by_name(vgg_layer3_out_tensor_name)
vgg_layer4_out_tensor = graph.get_tensor_by_name(vgg_layer4_out_tensor_name)
vgg_layer7_out_tensor = graph.get_tensor_by_name(vgg_layer7_out_tensor_name)
return vgg_input_tensor, vgg_keep_prob_tensor, vgg_layer3_out_tensor, vgg_layer4_out_tensor, vgg_layer7_out_tensor
tests.test_load_vgg(load_vgg, tf)
def layers(vgg_layer3_out, vgg_layer4_out, vgg_layer7_out, is_training, num_classes):
"""
Create the layers for a fully convolutional network. Build skip-layers using the vgg layers.
:param vgg_layer7_out: TF Tensor for VGG Layer 3 output
:param vgg_layer4_out: TF Tensor for VGG Layer 4 output
:param vgg_layer3_out: TF Tensor for VGG Layer 7 output
:param num_classes: Number of classes to classify
:return: The Tensor for the last layer of output
"""
if TRANSFER_LEARNING_MODE:
vgg_layer7_out = tf.stop_gradient(vgg_layer7_out)
vgg_layer4_out = tf.stop_gradient(vgg_layer4_out)
vgg_layer3_out = tf.stop_gradient(vgg_layer3_out)
vgg_layer3_out = tf.layers.batch_normalization(vgg_layer3_out, name="new_vgg_layer3_out", training=is_training)
vgg_layer4_out = tf.layers.batch_normalization(vgg_layer4_out, name="new_vgg_layer4_out", training=is_training)
vgg_layer7_out = tf.layers.batch_normalization(vgg_layer7_out, name="new_vgg_layer7_out", training=is_training)
vgg_layer3_out = tf.multiply(vgg_layer3_out, 0.0001)
vgg_layer4_out = tf.multiply(vgg_layer4_out, 0.01)
new_layer7_1x1_out = tf.layers.conv2d(vgg_layer7_out, filters=num_classes, kernel_size=(1, 1), strides=(1, 1),
name='new_layer7_1x1_out')
new_layer7_1x1_upsampled = tf.layers.conv2d_transpose(new_layer7_1x1_out, filters=num_classes, kernel_size=(4, 4),
strides=(4, 4), name='new_layer7_1x1_out_upsampled')
new_layer7_1x1_upsampled_bn = tf.layers.batch_normalization(new_layer7_1x1_upsampled,
name="new_layer7_1x1_upsampled_bn", training=is_training)
new_layer4_1x1_out = tf.layers.conv2d(vgg_layer4_out, filters=num_classes, kernel_size=(1, 1), strides=(1, 1),
name="new_layer4_1x1_out")
new_layer4_1x1_upsampled = tf.layers.conv2d_transpose(new_layer4_1x1_out, filters=num_classes, kernel_size=(3, 3),
strides=(2, 2), name="new_layer4_1x1_upsampled", padding='same')
new_layer4_1x1_upsampled_bn = tf.layers.batch_normalization(new_layer4_1x1_upsampled,
name="new_layer4_1x1_upsampled_bn",
training = is_training)
new_layer3_1x1_out = tf.layers.conv2d(vgg_layer3_out, filters=num_classes, kernel_size=(1, 1), strides=(1, 1),
name="new_layer3_1x1_out")
new_layer3_1x1_out_bn = tf.layers.batch_normalization(new_layer3_1x1_out,
name="new_layer3_1x1_upsampled_bn", training = is_training)
out = tf.add(new_layer7_1x1_upsampled_bn, new_layer4_1x1_upsampled_bn)
out = tf.add(out, new_layer3_1x1_out_bn)
new_final_layer_upsampled_4x = tf.layers.conv2d_transpose(out, filters=num_classes, kernel_size=(4, 4),
strides=(4, 4), name="new_final_layer_upsampled_4x")
new_final_layer_upsampled_4x_bn = tf.layers.batch_normalization(new_final_layer_upsampled_4x,
name="new_final_layer_upsampled_4x_bn",
training=is_training)
new_final_layer_upsampled_8x = tf.layers.conv2d_transpose(new_final_layer_upsampled_4x_bn, filters=num_classes, kernel_size=(5, 5),
strides=(2, 2), name="new_final_layer_upsampled_8x", padding='same')
return new_final_layer_upsampled_8x
tests.test_layers(layers)
def optimize(nn_last_layer, correct_label, learning_rate, num_classes):
"""
Build the TensorFLow loss and optimizer operations.
:param nn_last_layer: TF Tensor of the last layer in the neural network
:param correct_label: TF Placeholder for the correct label image
:param learning_rate: TF Placeholder for the learning rate
:param num_classes: Number of classes to classify
:return: Tuple of (logits, train_op, cross_entropy_loss, accuracy_op)
"""
cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=nn_last_layer, labels=correct_label),
name="cross_entropy")
reshaped_logits = tf.reshape(nn_last_layer, (-1, num_classes))
reshaped_correct_label = tf.reshape(correct_label, (-1, num_classes))
is_correct_prediction = tf.equal(tf.argmax(reshaped_logits, 1), tf.argmax(reshaped_correct_label, 1))
accuracy_op = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32), name="accuracy_op")
opt = tf.train.AdagradOptimizer(learning_rate=learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if TRANSFER_LEARNING_MODE:
trainable_variables = []
for variable in tf.trainable_variables():
if "new_" in variable.name:
trainable_variables.append(variable)
with tf.control_dependencies(update_ops):
training_op = opt.minimize(cross_entropy_loss, var_list=trainable_variables, name="training_op")
else:
with tf.control_dependencies(update_ops):
training_op = opt.minimize(cross_entropy_loss, name="training_op")
return nn_last_layer, training_op, cross_entropy_loss, accuracy_op
tests.test_optimize(optimize)
def save_model(sess, training_loss_metrics=None, validation_loss_metrics=None,
training_accuracy_history=None, validation_accuracy_history=None):
print("Saving the model")
if "saved_model" in os.listdir(os.getcwd()):
shutil.rmtree("./saved_model")
builder = tf.saved_model.builder.SavedModelBuilder("./saved_model")
builder.add_meta_graph_and_variables(sess, ["vgg16"])
builder.save()
if training_loss_metrics:
if CONTINUE_TRAINING:
with open("validation_loss_history", "rb") as f:
validation_loss_metrics = pickle.load(f) + validation_loss_metrics
with open("training_loss_history", "rb") as f:
training_loss_metrics = pickle.load(f) + training_loss_metrics
with open("validation_accuracy_history", "rb") as f:
validation_accuracy_history = pickle.load(f) + validation_accuracy_history
with open("training_accuracy_history", "rb") as f:
training_accuracy_history = pickle.load(f) + training_accuracy_history
with open('training_loss_history', 'wb') as f:
pickle.dump(training_loss_metrics, f)
with open('validation_loss_history', 'wb') as f:
pickle.dump(validation_loss_metrics, f)
with open('training_accuracy_history', 'wb') as f:
pickle.dump(training_accuracy_history, f)
with open('validation_accuracy_history', 'wb') as f:
pickle.dump(validation_accuracy_history, f)
def evaluate(image_paths, data_folder, image_shape, sess, input_image,correct_label, keep_prob, loss_op, accuracy_op,
is_training):
data_generator_function = helper.gen_batch_function(data_folder, image_shape, image_paths, augment=False)
batch_size = 8
data_generator = data_generator_function(batch_size)
num_examples = int(math.floor(len(image_paths)/batch_size)*batch_size)
total_loss = 0
total_acc = 0
for offset in range(0, num_examples, batch_size):
X_batch, y_batch = next(data_generator)
loss, accuracy = sess.run([loss_op, accuracy_op], feed_dict={input_image: X_batch, correct_label: y_batch,
keep_prob: 1.0, is_training:False})
total_loss += (loss * X_batch.shape[0])
total_acc += (accuracy * X_batch.shape[0])
return total_loss/num_examples, total_acc/num_examples
def train_nn(sess, epochs, data_folder, image_shape, batch_size, training_image_paths, validation_image_paths, train_op,
cross_entropy_loss, accuracy_op, input_image, correct_label, keep_prob, learning_rate, is_training):
"""
Train neural network and print out the loss during training.
:param sess: TF Session
:param epochs: Number of epochs
:param batch_size: Batch size
:param get_batches_fn: Function to get batches of training data. Call using get_batches_fn(batch_size)
:param train_op: TF Operation to train the neural network
:param cross_entropy_loss: TF Tensor for the amount of loss
:param input_image: TF Placeholder for input images
:param correct_label: TF Placeholder for label images
:param keep_prob: TF Placeholder for dropout keep probability
:param learning_rate: TF Placeholder for learning rate
"""
# TODO: Implement function
# Create function to get batches
get_batches_fn_training = helper.gen_batch_function(data_folder, image_shape, training_image_paths, augment=True)
training_batch_generator = get_batches_fn_training(batch_size)
samples_per_epoch = len(training_image_paths)
batches_per_epoch = math.floor(samples_per_epoch/batch_size)
training_loss_metrics = []
training_accuracy_metrics = []
validation_loss_metrics = []
validation_accuracy_metrics = []
print("Actual learning rate:", LEARNING_RATE, ", Actual keep prob:", KEEP_PROB)
for epoch in range(epochs):
for batch in tqdm(range(batches_per_epoch)):
X_batch , y_batch = next(training_batch_generator)
loss, _ = sess.run([cross_entropy_loss, train_op], feed_dict={
input_image: X_batch,
correct_label: y_batch,
keep_prob: KEEP_PROB,
learning_rate: LEARNING_RATE,
is_training: True
})
validation_loss, validation_accuracy = evaluate(validation_image_paths, data_folder, image_shape, sess, input_image, correct_label,
keep_prob, cross_entropy_loss, accuracy_op, is_training)
validation_loss_metrics.append(validation_loss)
validation_accuracy_metrics.append(validation_accuracy)
training_loss, training_accuracy = evaluate(training_image_paths, data_folder, image_shape, sess, input_image, correct_label,
keep_prob, cross_entropy_loss, accuracy_op, is_training)
training_loss_metrics.append(training_loss)
training_accuracy_metrics.append(training_accuracy)
print("Epoch %d:" % (epoch + 1), "Training loss: %.4f," % training_loss, "Validation loss: %.4f" % validation_loss)
if epoch % 10 == 0 and epoch > 0:
save_model(sess)
save_model(sess, training_loss_metrics, validation_loss_metrics, training_accuracy_metrics,
validation_accuracy_metrics)
# tests.test_train_nn(train_nn)
def run():
global LEARNING_RATE
global KEEP_PROB
global TRANSFER_LEARNING_MODE
global CONTINUE_TRAINING
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'-n',
'--num_epochs',
type=int,
nargs='?',
default=50,
help='Number of epochs.'
)
parser.add_argument(
'-lr',
'--learning_rate',
type=float,
nargs='?',
default=0.06,
help='Learning rate'
)
parser.add_argument(
'-k',
'--keep_probability',
type=float,
nargs='?',
default=1.0,
help='Keep probability for dropout'
)
parser.add_argument(
'-b',
'--batch_size',
type=int,
nargs='?',
default=16,
help='Batch size.'
)
parser.add_argument("-t", "--test", help="Test mode on", action="store_true")
parser.add_argument("-tlo", "--transfer_learn_off", help="Transfer learning mode off", action="store_true")
parser.add_argument("-ct", "--continues_training", help="Continue from where you left off", action="store_true")
args = parser.parse_args()
num_epochs = args.num_epochs
LEARNING_RATE = args.learning_rate
KEEP_PROB = args.keep_probability
batch_size = args.batch_size
testing_mode = args.test
CONTINUE_TRAINING = args.continues_training
TRANSFER_LEARNING_MODE = False if args.transfer_learn_off else True
print("Number of epochs:", num_epochs)
print("learning rate:", LEARNING_RATE)
print("Keep prob:", KEEP_PROB)
print("Batch size:", batch_size)
print("Training mode:", "False" if testing_mode else "True")
print("Trasfer learning mode:", "True" if TRANSFER_LEARNING_MODE else "False")
print("Continue training?:", "True" if CONTINUE_TRAINING else "False")
num_classes = 2
image_shape = (160, 576)
data_dir = './data'
runs_dir = './runs'
tests.test_for_kitti_dataset(data_dir)
# Download pretrained vgg model
helper.maybe_download_pretrained_vgg(data_dir)
# OPTIONAL: Train and Inference on the cityscapes dataset instead of the Kitti dataset.
# You'll need a GPU with at least 10 teraFLOPS to train on.
# https://www.cityscapes-dataset.com/
with tf.Session() as sess:
if not testing_mode:
# Path to vgg model
data_folder = os.path.join(data_dir, 'data_road/training')
image_paths = glob(os.path.join(data_folder, 'image_2', '*.png'))
training_image_paths, validation_image_paths = train_test_split(image_paths, test_size=0.2)
# OPTIONAL: Augment Images for better results
# https://datascience.stackexchange.com/questions/5224/how-to-prepare-augment-images-for-neural-network
if CONTINUE_TRAINING:
vgg_path = './saved_model'
else:
vgg_path = os.path.join(data_dir, 'vgg')
#Build NN using load_vgg, layers, and optimize function
vgg_input_tensor, vgg_keep_prob_tensor, vgg_layer3_out_tensor,\
vgg_layer4_out_tensor, vgg_layer7_out_tensor = load_vgg(sess, vgg_path)
if CONTINUE_TRAINING:
logits_operation_name = "new_final_layer_upsampled_8x/BiasAdd"
graph = tf.get_default_graph()
output_tensor = graph.get_operation_by_name(logits_operation_name).outputs[0]
train_op = graph.get_operation_by_name("training_op")
cross_entropy_loss = graph.get_operation_by_name("cross_entropy").outputs[0]
accuracy_op = graph.get_operation_by_name("accuracy_op").outputs[0]
correct_label = graph.get_tensor_by_name("correct_label:0")
learning_rate = graph.get_tensor_by_name("learning_rate:0")
is_training_placeholder = graph.get_tensor_by_name("is_training:0")
else:
is_training_placeholder = tf.placeholder(tf.bool, name="is_training")
output_tensor = layers(vgg_layer3_out_tensor, vgg_layer4_out_tensor, vgg_layer7_out_tensor,
is_training_placeholder, num_classes)
correct_label = tf.placeholder(tf.int8, (None,) + image_shape + (num_classes,), name="correct_label")
learning_rate = tf.placeholder(tf.float32, [], name="learning_rate")
output_tensor, train_op, cross_entropy_loss, accuracy_op = optimize(output_tensor, correct_label, learning_rate,
num_classes)
if not CONTINUE_TRAINING:
if TRANSFER_LEARNING_MODE:
my_variable_initializers = [var.initializer for var in tf.global_variables() if 'new_' in var.name]
sess.run(my_variable_initializers)
else:
sess.run(tf.global_variables_initializer())
#Train NN using the train_nn function
train_nn(sess, epochs=num_epochs, data_folder=data_folder,image_shape=image_shape, batch_size=batch_size,
training_image_paths=training_image_paths, validation_image_paths=validation_image_paths,
train_op=train_op, cross_entropy_loss=cross_entropy_loss, input_image=vgg_input_tensor,
correct_label=correct_label, accuracy_op=accuracy_op, keep_prob=vgg_keep_prob_tensor,
learning_rate=learning_rate, is_training=is_training_placeholder)
else:
test_model()
# TODO: Save inference data using helper.save_inference_samples
# helper.save_inference_samples(runs_dir, data_dir, sess, image_shape, logits, keep_prob, input_image)
# OPTIONAL: Apply the trained model to a video
def test_model():
image_shape = (160, 576)
data_dir = './data'
runs_dir = './runs'
with tf.Session() as sess:
vgg_input_tensor_name = 'image_input:0'
vgg_keep_prob_tensor_name = 'keep_prob:0'
logits_operation_name = "new_final_layer_upsampled_8x/BiasAdd"
tf.saved_model.loader.load(sess, ["vgg16"], "./saved_model")
graph = tf.get_default_graph()
vgg_input_tensor = graph.get_tensor_by_name(vgg_input_tensor_name)
vgg_keep_prob_tensor = graph.get_tensor_by_name(vgg_keep_prob_tensor_name)
is_training_placeholder = graph.get_tensor_by_name("is_training:0")
logits_tensor = graph.get_operation_by_name(logits_operation_name).outputs[0]
helper.save_inference_samples(runs_dir=runs_dir, data_dir=data_dir, sess=sess,image_shape=image_shape,
logits=logits_tensor, keep_prob=vgg_keep_prob_tensor,
input_image=vgg_input_tensor, is_training=is_training_placeholder)
if __name__ == '__main__':
run()