forked from ridiculousfish/libdivide
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibdivide_benchmark.c
999 lines (907 loc) · 36.4 KB
/
libdivide_benchmark.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
// Silence MSVC sprintf unsafe warnings
#define _CRT_SECURE_NO_WARNINGS
#include "libdivide.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#if defined(__GNUC__)
#define NOINLINE __attribute__((__noinline__))
#else
#define NOINLINE
#endif
#define NANOSEC_PER_SEC 1000000000ULL
#define NANOSEC_PER_USEC 1000ULL
#define NANOSEC_PER_MILLISEC 1000000ULL
#if defined(__cplusplus)
using namespace libdivide;
#endif
#if defined(_WIN32) || defined(WIN32)
#define NOMINMAX
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <windows.h>
#include <mmsystem.h>
#define LIBDIVIDE_WINDOWS
#pragma comment(lib, "winmm")
#endif
#if !defined(LIBDIVIDE_WINDOWS)
#include <sys/time.h> // for gettimeofday()
#endif
struct random_state {
uint32_t hi;
uint32_t lo;
};
#define SEED {2147483563, 2147483563 ^ 0x49616E42}
#define ITERATIONS (1 << 19)
#define GEN_ITERATIONS (1 << 16)
uint64_t sGlobalUInt64;
static uint32_t my_random(struct random_state *state) {
state->hi = (state->hi << 16) + (state->hi >> 16);
state->hi += state->lo;
state->lo += state->hi;
return state->hi;
}
#if defined(LIBDIVIDE_WINDOWS)
static LARGE_INTEGER gPerfCounterFreq;
#endif
#if !defined(LIBDIVIDE_WINDOWS)
static uint64_t nanoseconds(void) {
struct timeval now;
gettimeofday(&now, NULL);
return now.tv_sec * NANOSEC_PER_SEC + now.tv_usec * NANOSEC_PER_USEC;
}
#endif
struct FunctionParams_t {
const void *d; //a pointer to e.g. a uint32_t
const void *denomPtr; // a pointer to e.g. libdivide_u32_t
const void *denomBranchfreePtr; // a pointer to e.g. libdivide_u32_t from branchfree
const void *data; // a pointer to the data to be divided
};
struct time_result {
uint64_t time;
uint64_t result;
};
static struct time_result time_function(uint64_t (*func)(struct FunctionParams_t*), struct FunctionParams_t *params) {
struct time_result tresult;
#if defined(LIBDIVIDE_WINDOWS)
LARGE_INTEGER start, end;
QueryPerformanceCounter(&start);
uint64_t result = func(params);
QueryPerformanceCounter(&end);
uint64_t diff = end.QuadPart - start.QuadPart;
sGlobalUInt64 += result;
tresult.result = result;
tresult.time = (diff * 1000000000) / gPerfCounterFreq.QuadPart;
#else
uint64_t start = nanoseconds();
uint64_t result = func(params);
uint64_t end = nanoseconds();
uint64_t diff = end - start;
sGlobalUInt64 += result;
tresult.result = result;
tresult.time = diff;
#endif
return tresult;
}
//U32
NOINLINE
static uint64_t mine_u32(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_t denom = *(struct libdivide_u32_t *)params->denomPtr;
const uint32_t *data = (const uint32_t *)params->data;
uint32_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += libdivide_u32_do(numer, &denom);
}
return sum;
}
NOINLINE
static uint64_t mine_u32_branchfree(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_branchfree_t denom = *(struct libdivide_u32_branchfree_t *)params->denomBranchfreePtr;
const uint32_t *data = (const uint32_t *)params->data;
uint32_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += libdivide_u32_branchfree_do(numer, &denom);
}
return sum;
}
#if defined(LIBDIVIDE_USE_SSE2)
NOINLINE static uint64_t mine_u32_vector(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_t denom = *(struct libdivide_u32_t *)params->denomPtr;
const uint32_t *data = (const uint32_t *)params->data;
__m128i sumX4 = _mm_setzero_si128();
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_u32_do_vector(numers, &denom));
}
const uint32_t *comps = (const uint32_t *)&sumX4;
return comps[0] + comps[1] + comps[2] + comps[3];
}
NOINLINE static uint64_t mine_u32_vector_unswitched(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_t denom = *(struct libdivide_u32_t *)params->denomPtr;
const uint32_t *data = (const uint32_t *)params->data;
__m128i sumX4 = _mm_setzero_si128();
int algo = libdivide_u32_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_u32_do_vector_alg0(numers, &denom));
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_u32_do_vector_alg1(numers, &denom));
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_u32_do_vector_alg2(numers, &denom));
}
}
const uint32_t *comps = (const uint32_t *)&sumX4;
return comps[0] + comps[1] + comps[2] + comps[3];
}
NOINLINE static uint64_t mine_u32_vector_branchfree(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_branchfree_t denom = *(struct libdivide_u32_branchfree_t *)params->denomBranchfreePtr;
const uint32_t *data = (const uint32_t *)params->data;
__m128i sumX4 = _mm_setzero_si128();
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_u32_branchfree_do_vector(numers, &denom));
}
const uint32_t *comps = (const uint32_t *)&sumX4;
return comps[0] + comps[1] + comps[2] + comps[3];
}
#endif
NOINLINE
static uint64_t mine_u32_unswitched(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u32_t denom = *(struct libdivide_u32_t *)params->denomPtr;
const uint32_t *data = (const uint32_t *)params->data;
uint32_t sum = 0;
int algo = libdivide_u32_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += libdivide_u32_do_alg0(numer, &denom);
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += libdivide_u32_do_alg1(numer, &denom);
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += libdivide_u32_do_alg2(numer, &denom);
}
}
return sum;
}
NOINLINE
static uint64_t his_u32(struct FunctionParams_t *params) {
unsigned iter;
const uint32_t *data = (const uint32_t *)params->data;
const uint32_t d = *(uint32_t *)params->d;
uint32_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
uint32_t numer = data[iter];
sum += numer / d;
}
return sum;
}
NOINLINE
static uint64_t mine_u32_generate(struct FunctionParams_t *params) {
uint32_t *dPtr = (uint32_t *)params->d;
struct libdivide_u32_t *denomPtr = (struct libdivide_u32_t *)params->denomPtr;
unsigned iter;
for (iter = 0; iter < GEN_ITERATIONS; iter++) {
*denomPtr = libdivide_u32_gen(*dPtr);
}
return *dPtr;
}
//S32
NOINLINE
static uint64_t mine_s32(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_s32_t denom = *(struct libdivide_s32_t *)params->denomPtr;
const int32_t *data = (const int32_t *)params->data;
int32_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do(numer, &denom);
}
return sum;
}
NOINLINE
static uint64_t mine_s32_branchfree(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_s32_branchfree_t denom = *(struct libdivide_s32_branchfree_t *)params->denomBranchfreePtr;
const int32_t *data = (const int32_t *)params->data;
int32_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_branchfree_do(numer, &denom);
}
return sum;
}
#if defined(LIBDIVIDE_USE_SSE2)
NOINLINE
static uint64_t mine_s32_vector(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX4 = _mm_setzero_si128();
const struct libdivide_s32_t denom = *(struct libdivide_s32_t *)params->denomPtr;
const int32_t *data = (const int32_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector(numers, &denom));
}
const int32_t *comps = (const int32_t *)&sumX4;
int32_t sum = comps[0] + comps[1] + comps[2] + comps[3];
return sum;
}
NOINLINE
static uint64_t mine_s32_vector_unswitched(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX4 = _mm_setzero_si128();
const struct libdivide_s32_t denom = *(struct libdivide_s32_t *)params->denomPtr;
const int32_t *data = (const int32_t *)params->data;
int algo = libdivide_s32_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector_alg0(numers, &denom));
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector_alg1(numers, &denom));
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector_alg2(numers, &denom));
}
}
else if (algo == 3) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector_alg3(numers, &denom));
}
}
else if (algo == 4) {
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_do_vector_alg4(numers, &denom));
}
}
const int32_t *comps = (const int32_t *)&sumX4;
int32_t sum = comps[0] + comps[1] + comps[2] + comps[3];
return sum;
}
NOINLINE
static uint64_t mine_s32_vector_branchfree(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX4 = _mm_setzero_si128();
const struct libdivide_s32_branchfree_t denom = *(struct libdivide_s32_branchfree_t *)params->denomBranchfreePtr;
const int32_t *data = (const int32_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter+=4) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX4 = _mm_add_epi32(sumX4, libdivide_s32_branchfree_do_vector(numers, &denom));
}
const int32_t *comps = (const int32_t *)&sumX4;
int32_t sum = comps[0] + comps[1] + comps[2] + comps[3];
return sum;
}
#endif
NOINLINE
static uint64_t mine_s32_unswitched(struct FunctionParams_t *params) {
unsigned iter;
int32_t sum = 0;
const struct libdivide_s32_t denom = *(struct libdivide_s32_t *)params->denomPtr;
const int32_t *data = (const int32_t *)params->data;
int algo = libdivide_s32_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do_alg0(numer, &denom);
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do_alg1(numer, &denom);
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do_alg2(numer, &denom);
}
}
else if (algo == 3) {
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do_alg3(numer, &denom);
}
}
else if (algo == 4) {
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += libdivide_s32_do_alg4(numer, &denom);
}
}
return (uint64_t)sum;
}
NOINLINE
static uint64_t his_s32(struct FunctionParams_t *params) {
unsigned iter;
int32_t sum = 0;
const int32_t d = *(int32_t *)params->d;
const int32_t *data = (const int32_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter++) {
int32_t numer = data[iter];
sum += numer / d;
}
return sum;
}
NOINLINE
static uint64_t mine_s32_generate(struct FunctionParams_t *params) {
unsigned iter;
int32_t *dPtr = (int32_t *)params->d;
struct libdivide_s32_t *denomPtr = (struct libdivide_s32_t *)params->denomPtr;
for (iter = 0; iter < GEN_ITERATIONS; iter++) {
*denomPtr = libdivide_s32_gen(*dPtr);
}
return *dPtr;
}
//U64
NOINLINE
static uint64_t mine_u64(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u64_t denom = *(struct libdivide_u64_t *)params->denomPtr;
const uint64_t *data = (const uint64_t *)params->data;
uint64_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += libdivide_u64_do(numer, &denom);
}
return sum;
}
NOINLINE
static uint64_t mine_u64_branchfree(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_u64_branchfree_t denom = *(struct libdivide_u64_branchfree_t *)params->denomBranchfreePtr;
const uint64_t *data = (const uint64_t *)params->data;
uint64_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += libdivide_u64_branchfree_do(numer, &denom);
}
return sum;
}
NOINLINE
static uint64_t mine_u64_unswitched(struct FunctionParams_t *params) {
unsigned iter;
uint64_t sum = 0;
const struct libdivide_u64_t denom = *(struct libdivide_u64_t *)params->denomPtr;
const uint64_t *data = (const uint64_t *)params->data;
int algo = libdivide_u64_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += libdivide_u64_do_alg0(numer, &denom);
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += libdivide_u64_do_alg1(numer, &denom);
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += libdivide_u64_do_alg2(numer, &denom);
}
}
return sum;
}
#if defined(LIBDIVIDE_USE_SSE2)
NOINLINE static uint64_t mine_u64_vector_unswitched(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
const struct libdivide_u64_t denom = *(struct libdivide_u64_t *)params->denomPtr;
const uint64_t *data = (const uint64_t *)params->data;
int algo = libdivide_u64_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_u64_do_vector_alg0(numers, &denom));
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_u64_do_vector_alg1(numers, &denom));
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_u64_do_vector_alg2(numers, &denom));
}
}
const uint64_t *comps = (const uint64_t *)&sumX2;
return comps[0] + comps[1];
}
NOINLINE static uint64_t mine_u64_vector(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
const struct libdivide_u64_t denom = *(struct libdivide_u64_t *)params->denomPtr;
const uint64_t *data = (const uint64_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_u64_do_vector(numers, &denom));
}
const uint64_t *comps = (const uint64_t *)&sumX2;
return comps[0] + comps[1];
}
NOINLINE static uint64_t mine_u64_vector_branchfree(struct FunctionParams_t *params) {
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
const struct libdivide_u64_branchfree_t denom = *(struct libdivide_u64_branchfree_t *)params->denomBranchfreePtr;
const uint64_t *data = (const uint64_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_u64_branchfree_do_vector(numers, &denom));
}
const uint64_t *comps = (const uint64_t *)&sumX2;
return comps[0] + comps[1];
}
#endif
NOINLINE
static uint64_t his_u64(struct FunctionParams_t *params) {
unsigned iter;
uint64_t sum = 0;
const uint64_t d = *(uint64_t *)params->d;
const uint64_t *data = (const uint64_t *)params->data;
for (iter = 0; iter < ITERATIONS; iter++) {
uint64_t numer = data[iter];
sum += numer / d;
}
return sum;
}
NOINLINE
static uint64_t mine_u64_generate(struct FunctionParams_t *params) {
unsigned iter;
uint64_t *dPtr = (uint64_t *)params->d;
struct libdivide_u64_t *denomPtr = (struct libdivide_u64_t *)params->denomPtr;
for (iter = 0; iter < GEN_ITERATIONS; iter++) {
*denomPtr = libdivide_u64_gen(*dPtr);
}
return *dPtr;
}
NOINLINE
static uint64_t mine_s64(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_s64_t denom = *(struct libdivide_s64_t *)params->denomPtr;
const int64_t *data = (const int64_t *)params->data;
int64_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do(numer, &denom);
}
return sum;
}
NOINLINE
static uint64_t mine_s64_branchfree(struct FunctionParams_t *params) {
unsigned iter;
const struct libdivide_s64_branchfree_t denom = *(struct libdivide_s64_branchfree_t *)params->denomBranchfreePtr;
const int64_t *data = (const int64_t *)params->data;
int64_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_branchfree_do(numer, &denom);
}
return sum;
}
#if defined(LIBDIVIDE_USE_SSE2)
NOINLINE
static uint64_t mine_s64_vector(struct FunctionParams_t *params) {
const struct libdivide_s64_t denom = *(struct libdivide_s64_t *)params->denomPtr;
const int64_t *data = (const int64_t *)params->data;
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector(numers, &denom));
}
const int64_t *comps = (const int64_t *)&sumX2;
int64_t sum = comps[0] + comps[1];
return sum;
}
NOINLINE
static uint64_t mine_s64_vector_branchfree(struct FunctionParams_t *params) {
const struct libdivide_s64_branchfree_t denom = *(struct libdivide_s64_branchfree_t *)params->denomBranchfreePtr;
const int64_t *data = (const int64_t *)params->data;
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_branchfree_do_vector(numers, &denom));
}
const int64_t *comps = (const int64_t *)&sumX2;
int64_t sum = comps[0] + comps[1];
return sum;
}
NOINLINE
static uint64_t mine_s64_vector_unswitched(struct FunctionParams_t *params) {
const struct libdivide_s64_t denom = *(struct libdivide_s64_t *)params->denomPtr;
const int64_t *data = (const int64_t *)params->data;
unsigned iter;
__m128i sumX2 = _mm_setzero_si128();
int algo = libdivide_s64_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector_alg0(numers, &denom));
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector_alg1(numers, &denom));
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector_alg2(numers, &denom));
}
}
else if (algo == 3) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector_alg3(numers, &denom));
}
}
else if (algo == 4) {
for (iter = 0; iter < ITERATIONS; iter+=2) {
__m128i numers = _mm_load_si128((const __m128i*)(data + iter));
sumX2 = _mm_add_epi64(sumX2, libdivide_s64_do_vector_alg4(numers, &denom));
}
}
const int64_t *comps = (const int64_t *)&sumX2;
int64_t sum = comps[0] + comps[1];
return sum;
}
#endif
NOINLINE
static uint64_t mine_s64_unswitched(struct FunctionParams_t *params) {
const struct libdivide_s64_t denom = *(struct libdivide_s64_t *)params->denomPtr;
const int64_t *data = (const int64_t *)params->data;
unsigned iter;
int64_t sum = 0;
int algo = libdivide_s64_get_algorithm(&denom);
if (algo == 0) {
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do_alg0(numer, &denom);
}
}
else if (algo == 1) {
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do_alg1(numer, &denom);
}
}
else if (algo == 2) {
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do_alg2(numer, &denom);
}
}
else if (algo == 3) {
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do_alg3(numer, &denom);
}
}
else if (algo == 4) {
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += libdivide_s64_do_alg4(numer, &denom);
}
}
return sum;
}
NOINLINE
static uint64_t his_s64(struct FunctionParams_t *params) {
const int64_t *data = (const int64_t *)params->data;
const int64_t d = *(int64_t *)params->d;
unsigned iter;
int64_t sum = 0;
for (iter = 0; iter < ITERATIONS; iter++) {
int64_t numer = data[iter];
sum += numer / d;
}
return sum;
}
NOINLINE
static uint64_t mine_s64_generate(struct FunctionParams_t *params) {
int64_t *dPtr = (int64_t *)params->d;
struct libdivide_s64_t *denomPtr = (struct libdivide_s64_t *)params->denomPtr;
unsigned iter;
for (iter = 0; iter < GEN_ITERATIONS; iter++) {
*denomPtr = libdivide_s64_gen(*dPtr);
}
return *dPtr;
}
/* Stub functions for when we have no SSE2 */
#if !defined(LIBDIVIDE_USE_SSE2)
NOINLINE static uint64_t mine_u32_vector(struct FunctionParams_t *params) { return mine_u32(params); }
NOINLINE static uint64_t mine_u32_vector_unswitched(struct FunctionParams_t *params) { return mine_u32_unswitched(params); }
NOINLINE static uint64_t mine_u32_vector_branchfree(struct FunctionParams_t *params) { return mine_u32_branchfree(params); }
NOINLINE static uint64_t mine_s32_vector(struct FunctionParams_t *params) { return mine_s32(params); }
NOINLINE static uint64_t mine_s32_vector_unswitched(struct FunctionParams_t *params) { return mine_s32_unswitched(params); }
NOINLINE static uint64_t mine_s32_vector_branchfree(struct FunctionParams_t *params) { return mine_s32_branchfree(params); }
NOINLINE static uint64_t mine_u64_vector(struct FunctionParams_t *params) { return mine_u64(params); }
NOINLINE static uint64_t mine_u64_vector_unswitched(struct FunctionParams_t *params) { return mine_u64_unswitched(params); }
NOINLINE static uint64_t mine_u64_vector_branchfree(struct FunctionParams_t *params) { return mine_u64_branchfree(params); }
NOINLINE static uint64_t mine_s64_vector(struct FunctionParams_t *params) { return mine_s64(params); }
NOINLINE static uint64_t mine_s64_vector_unswitched(struct FunctionParams_t *params) { return mine_s64_unswitched(params); }
NOINLINE static uint64_t mine_s64_vector_branchfree(struct FunctionParams_t *params) { return mine_s64_branchfree(params); }
#endif
struct TestResult {
double my_base_time;
double my_branchfree_time;
double my_unswitched_time;
double my_vector_time;
double my_vector_branchfree_time;
double my_vector_unswitched_time;
double his_time;
double gen_time;
int algo;
};
static uint64_t find_min(const uint64_t *vals, size_t cnt) {
uint64_t result = vals[0];
size_t i;
for (i=1; i < cnt; i++) {
if (vals[i] < result) result = vals[i];
}
return result;
}
typedef uint64_t (*TestFunc_t)(struct FunctionParams_t *params);
NOINLINE
struct TestResult test_one(TestFunc_t mine, TestFunc_t mine_branchfree, TestFunc_t mine_vector, TestFunc_t mine_unswitched, TestFunc_t mine_vector_unswitched, TestFunc_t mine_vector_branchfree, TestFunc_t his, TestFunc_t generate, struct FunctionParams_t *params) {
#define TEST_COUNT 30
struct TestResult result;
memset(&result, 0, sizeof result);
#define CHECK(actual, expected) do { if (1 && actual != expected) printf("Failure on line %lu\n", (unsigned long)__LINE__); } while (0)
uint64_t my_times[TEST_COUNT], my_times_branchfree[TEST_COUNT], my_times_unswitched[TEST_COUNT], my_times_vector[TEST_COUNT], my_times_vector_unswitched[TEST_COUNT], my_times_vector_branchfree[TEST_COUNT], his_times[TEST_COUNT], gen_times[TEST_COUNT];
unsigned iter;
struct time_result tresult;
for (iter = 0; iter < TEST_COUNT; iter++) {
tresult = time_function(his, params); his_times[iter] = tresult.time; const uint64_t expected = tresult.result;
tresult = time_function(mine, params); my_times[iter] = tresult.time; CHECK(tresult.result, expected);
tresult = time_function(mine_branchfree, params); my_times_branchfree[iter] = tresult.time; CHECK(tresult.result, expected);
tresult = time_function(mine_unswitched, params); my_times_unswitched[iter] = tresult.time; CHECK(tresult.result, expected);
#if defined(LIBDIVIDE_USE_SSE2)
tresult = time_function(mine_vector, params); my_times_vector[iter] = tresult.time; CHECK(tresult.result, expected);
tresult = time_function(mine_vector_branchfree, params); my_times_vector_branchfree[iter] = tresult.time; CHECK(tresult.result, expected);
tresult = time_function(mine_vector_unswitched, params); my_times_vector_unswitched[iter] = tresult.time; CHECK(tresult.result, expected);
#else
my_times_vector[iter]=0;
my_times_vector_unswitched[iter] = 0;
my_times_vector_branchfree[iter] = 0;
(void) mine_vector;
(void) mine_vector_unswitched;
(void) mine_vector_branchfree;
#endif
tresult = time_function(generate, params); gen_times[iter] = tresult.time;
}
result.gen_time = find_min(gen_times, TEST_COUNT) / (double)GEN_ITERATIONS;
result.my_base_time = find_min(my_times, TEST_COUNT) / (double)ITERATIONS;
result.my_branchfree_time = find_min(my_times_branchfree, TEST_COUNT) / (double)ITERATIONS;
result.my_vector_time = find_min(my_times_vector, TEST_COUNT) / (double)ITERATIONS;
//printf("%f - %f\n", find_min(my_times_vector, TEST_COUNT) / (double)ITERATIONS, result.my_vector_time);
result.my_unswitched_time = find_min(my_times_unswitched, TEST_COUNT) / (double)ITERATIONS;
result.my_vector_branchfree_time = find_min(my_times_vector_branchfree, TEST_COUNT) / (double)ITERATIONS;
result.my_vector_unswitched_time = find_min(my_times_vector_unswitched, TEST_COUNT) / (double)ITERATIONS;
result.his_time = find_min(his_times, TEST_COUNT) / (double)ITERATIONS;
return result;
#undef TEST_COUNT
}
NOINLINE
struct TestResult test_one_u32(uint32_t d, const uint32_t *data) {
int no_branchfree = (d == 1);
struct libdivide_u32_t div_struct = libdivide_u32_gen(d);
struct libdivide_u32_branchfree_t div_struct_bf = libdivide_u32_branchfree_gen(no_branchfree ? 2 : d);
struct FunctionParams_t params;
params.d = &d;
params.denomPtr = &div_struct;
params.denomBranchfreePtr = &div_struct_bf;
params.data = data;
struct TestResult result = test_one(mine_u32,
no_branchfree ? mine_u32 : mine_u32_branchfree,
mine_u32_vector,
mine_u32_unswitched,
mine_u32_vector_unswitched,
no_branchfree ? mine_u32_vector : mine_u32_vector_branchfree,
his_u32,
mine_u32_generate,
¶ms);
result.algo = libdivide_u32_get_algorithm(&div_struct);
return result;
}
NOINLINE
struct TestResult test_one_s32(int32_t d, const int32_t *data) {
int no_branchfree = (d == 1 || d == -1);
struct libdivide_s32_t div_struct = libdivide_s32_gen(d);
struct libdivide_s32_branchfree_t div_struct_bf = libdivide_s32_branchfree_gen(no_branchfree ? 2 : d);
struct FunctionParams_t params;
params.d = &d;
params.denomPtr = &div_struct;
params.denomBranchfreePtr = &div_struct_bf;
params.data = data;
struct TestResult result = test_one(mine_s32,
no_branchfree ? mine_s32 : mine_s32_branchfree,
mine_s32_vector,
mine_s32_unswitched,
mine_s32_vector_unswitched,
no_branchfree ? mine_s32_vector : mine_s32_vector_branchfree,
his_s32,
mine_s32_generate,
¶ms);
result.algo = libdivide_s32_get_algorithm(&div_struct);
return result;
}
NOINLINE
struct TestResult test_one_u64(uint64_t d, const uint64_t *data) {
int no_branchfree = (d == 1);
struct libdivide_u64_t div_struct = libdivide_u64_gen(d);
struct libdivide_u64_branchfree_t div_struct_bf = libdivide_u64_branchfree_gen(no_branchfree ? 2 : d);
struct FunctionParams_t params;
params.d = &d;
params.denomPtr = &div_struct;
params.denomBranchfreePtr = &div_struct_bf;
params.data = data;
struct TestResult result = test_one(mine_u64,
no_branchfree ? mine_u64 : mine_u64_branchfree,
mine_u64_vector,
mine_u64_unswitched,
mine_u64_vector_unswitched,
no_branchfree ? mine_u64_vector : mine_u64_vector_branchfree,
his_u64,
mine_u64_generate,
¶ms);
result.algo = libdivide_u64_get_algorithm(&div_struct);
return result;
}
NOINLINE
struct TestResult test_one_s64(int64_t d, const int64_t *data) {
int no_branchfree = (d == 1 || d == -1);
struct libdivide_s64_t div_struct = libdivide_s64_gen(d);
struct libdivide_s64_branchfree_t div_struct_bf = libdivide_s64_branchfree_gen(no_branchfree ? 2 : d);
struct FunctionParams_t params;
params.d = &d;
params.denomPtr = &div_struct;
params.denomBranchfreePtr = no_branchfree ? (void *)&div_struct : (void *)&div_struct_bf;
params.data = data;
struct TestResult result = test_one(mine_s64, no_branchfree ? mine_s64 : mine_s64_branchfree, mine_s64_vector, mine_s64_unswitched, mine_s64_vector_unswitched, mine_s64_vector_branchfree, his_s64, mine_s64_generate, ¶ms);
result.algo = libdivide_s64_get_algorithm(&div_struct);
return result;
}
static void report_header(void) {
printf("%6s%8s%8s%8s%8s%8s%8s%8s%8s%6s\n", "#", "system", "scalar", "scl_bf", "scl_us", "vector", "vec_bf", "vec_us", "gener", "algo");
}
static void report_result(const char *input, struct TestResult result) {
printf("%6s%8.3f%8.3f%8.3f%8.3f%8.3f%8.3f%8.3f%8.3f%6d\n", input, result.his_time, result.my_base_time, result.my_branchfree_time, result.my_unswitched_time, result.my_vector_time, result.my_vector_branchfree_time, result.my_vector_unswitched_time, result.gen_time, result.algo);
}
static void test_many_u32(const uint32_t *data) {
report_header();
uint32_t d;
for (d=1; d > 0; d++) {
struct TestResult result = test_one_u32(d, data);
char input_buff[32];
sprintf(input_buff, "%u", d);
report_result(input_buff, result);
}
}
static void test_many_s32(const int32_t *data) {
report_header();
int32_t d;
for (d=1; d != 0;) {
struct TestResult result = test_one_s32(d, data);
char input_buff[32];
sprintf(input_buff, "%d", d);
report_result(input_buff, result);
d = -d;
if (d > 0) d++;
}
}
static void test_many_u64(const uint64_t *data) {
report_header();
uint64_t d;
for (d=1; d > 0; d++) {
struct TestResult result = test_one_u64(d, data);
char input_buff[32];
sprintf(input_buff, "%" PRIu64, d);
report_result(input_buff, result);
}
}
static void test_many_s64(const int64_t *data) {
report_header();
int64_t d;
for (d=1; d != 0;) {
struct TestResult result = test_one_s64(d, data);
char input_buff[32];
sprintf(input_buff, "%" PRId64, d);
report_result(input_buff, result);
d = -d;
if (d > 0) d++;
}
}
static const uint32_t *random_data(unsigned multiple) {
#if defined(LIBDIVIDE_WINDOWS)
uint32_t *data = (uint32_t *)malloc(multiple * ITERATIONS * sizeof *data);
#else
/* Linux doesn't always give us data sufficiently aligned for SSE, so we can't use malloc(). */
void *ptr = NULL;
int failed = posix_memalign(&ptr, 16, multiple * ITERATIONS * sizeof(uint32_t));
if (failed) {
printf("Failed to align memory!\n");
exit(1);
}
uint32_t *data = ptr;
#endif
uint32_t i;
struct random_state state = SEED;
for (i=0; i < ITERATIONS * multiple; i++) {
data[i] = my_random(&state);
}
return data;
}
int main(int argc, char* argv[]) {
#if defined(LIBDIVIDE_WINDOWS)
QueryPerformanceFrequency(&gPerfCounterFreq);
#endif
int i, u32 = 0, u64 = 0, s32 = 0, s64 = 0;
if (argc == 1) {
/* Test all */
u32 = u64 = s32 = s64 = 1;
}
else {
for (i=1; i < argc; i++) {
if (! strcmp(argv[i], "u32")) u32 = 1;
else if (! strcmp(argv[i], "u64")) u64 = 1;
else if (! strcmp(argv[i], "s32")) s32 = 1;
else if (! strcmp(argv[i], "s64")) s64 = 1;
else printf("Unknown test '%s'\n", argv[i]), exit(0);
}
}
const uint32_t *data = NULL;
data = random_data(1);
if (u32) test_many_u32(data);
if (s32) test_many_s32((const int32_t *)data);
free((void *)data);
data = random_data(2);
if (u64) test_many_u64((const uint64_t *)data);
if (s64) test_many_s64((const int64_t *)data);
free((void *)data);
return 0;
}