forked from keras-team/keras-applications
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mobilenet_v3.py
549 lines (485 loc) · 22.6 KB
/
mobilenet_v3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
"""MobileNet v3 models for Keras.
The following table describes the performance of MobileNets:
------------------------------------------------------------------------
MACs stands for Multiply Adds
| Classification Checkpoint| MACs(M)| Parameters(M)| Top1 Accuracy| Pixel1 CPU(ms)|
| [mobilenet_v3_large_1.0_224] | 217 | 5.4 | 75.6 | 51.2 |
| [mobilenet_v3_large_0.75_224] | 155 | 4.0 | 73.3 | 39.8 |
| [mobilenet_v3_large_minimalistic_1.0_224] | 209 | 3.9 | 72.3 | 44.1 |
| [mobilenet_v3_small_1.0_224] | 66 | 2.9 | 68.1 | 15.8 |
| [mobilenet_v3_small_0.75_224] | 44 | 2.4 | 65.4 | 12.8 |
| [mobilenet_v3_small_minimalistic_1.0_224] | 65 | 2.0 | 61.9 | 12.2 |
The weights for all 6 models are obtained and
translated from the Tensorflow checkpoints
from TensorFlow checkpoints found [here]
(https://github.com/tensorflow/models/tree/master/research/
slim/nets/mobilenet/README.md).
# Reference
This file contains building code for MobileNetV3, based on
[Searching for MobileNetV3]
(https://arxiv.org/pdf/1905.02244.pdf) (ICCV 2019)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import warnings
from . import correct_pad
from . import get_submodules_from_kwargs
from . import imagenet_utils
from .imagenet_utils import _obtain_input_shape
from .imagenet_utils import decode_predictions
backend = None
layers = None
models = None
keras_utils = None
BASE_WEIGHT_PATH = ('https://github.com/DrSlink/mobilenet_v3_keras/'
'releases/download/v1.0/')
WEIGHTS_HASHES = {
'large_224_0.75_float': (
'765b44a33ad4005b3ac83185abf1d0eb',
'c256439950195a46c97ede7c294261c6'),
'large_224_1.0_float': (
'59e551e166be033d707958cf9e29a6a7',
'12c0a8442d84beebe8552addf0dcb950'),
'large_minimalistic_224_1.0_float': (
'675e7b876c45c57e9e63e6d90a36599c',
'c1cddbcde6e26b60bdce8e6e2c7cae54'),
'small_224_0.75_float': (
'cb65d4e5be93758266aa0a7f2c6708b7',
'c944bb457ad52d1594392200b48b4ddb'),
'small_224_1.0_float': (
'8768d4c2e7dee89b9d02b2d03d65d862',
'5bec671f47565ab30e540c257bba8591'),
'small_minimalistic_224_1.0_float': (
'99cd97fb2fcdad2bf028eb838de69e37',
'1efbf7e822e03f250f45faa3c6bbe156'),
}
def preprocess_input(x, **kwargs):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 4D numpy array consists of RGB values within [0, 255].
# Returns
Preprocessed array.
"""
return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
def relu(x):
return layers.ReLU()(x)
def hard_sigmoid(x):
return layers.ReLU(6.)(x + 3.) * (1. / 6.)
def hard_swish(x):
return layers.Multiply()([layers.Activation(hard_sigmoid)(x), x])
# This function is taken from the original tf repo.
# It ensures that all layers have a channel number that is divisible by 8
# It can be seen here:
# https://github.com/tensorflow/models/blob/master/research/
# slim/nets/mobilenet/mobilenet.py
def _depth(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _se_block(inputs, filters, se_ratio, prefix):
x = layers.GlobalAveragePooling2D(name=prefix + 'squeeze_excite/AvgPool')(inputs)
if backend.image_data_format() == 'channels_first':
x = layers.Reshape((filters, 1, 1))(x)
else:
x = layers.Reshape((1, 1, filters))(x)
x = layers.Conv2D(_depth(filters * se_ratio),
kernel_size=1,
padding='same',
name=prefix + 'squeeze_excite/Conv')(x)
x = layers.ReLU(name=prefix + 'squeeze_excite/Relu')(x)
x = layers.Conv2D(filters,
kernel_size=1,
padding='same',
name=prefix + 'squeeze_excite/Conv_1')(x)
x = layers.Activation(hard_sigmoid)(x)
if backend.backend() == 'theano':
# For the Theano backend, we have to explicitly make
# the excitation weights broadcastable.
x = layers.Lambda(
lambda br: backend.pattern_broadcast(br, [True, True, True, False]),
output_shape=lambda input_shape: input_shape,
name=prefix + 'squeeze_excite/broadcast')(x)
x = layers.Multiply(name=prefix + 'squeeze_excite/Mul')([inputs, x])
return x
def _inverted_res_block(x, expansion, filters, kernel_size, stride,
se_ratio, activation, block_id):
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
shortcut = x
prefix = 'expanded_conv/'
infilters = backend.int_shape(x)[channel_axis]
if block_id:
# Expand
prefix = 'expanded_conv_{}/'.format(block_id)
x = layers.Conv2D(_depth(infilters * expansion),
kernel_size=1,
padding='same',
use_bias=False,
name=prefix + 'expand')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand/BatchNorm')(x)
x = layers.Activation(activation)(x)
if stride == 2:
x = layers.ZeroPadding2D(padding=correct_pad(backend, x, kernel_size),
name=prefix + 'depthwise/pad')(x)
x = layers.DepthwiseConv2D(kernel_size,
strides=stride,
padding='same' if stride == 1 else 'valid',
use_bias=False,
name=prefix + 'depthwise')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise/BatchNorm')(x)
x = layers.Activation(activation)(x)
if se_ratio:
x = _se_block(x, _depth(infilters * expansion), se_ratio, prefix)
x = layers.Conv2D(filters,
kernel_size=1,
padding='same',
use_bias=False,
name=prefix + 'project')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name=prefix + 'project/BatchNorm')(x)
if stride == 1 and infilters == filters:
x = layers.Add(name=prefix + 'Add')([shortcut, x])
return x
def MobileNetV3(stack_fn,
last_point_ch,
input_shape=None,
alpha=1.0,
model_type='large',
minimalistic=False,
include_top=True,
weights='imagenet',
input_tensor=None,
classes=1000,
pooling=None,
dropout_rate=0.2,
**kwargs):
"""Instantiates the MobileNetV3 architecture.
# Arguments
stack_fn: a function that returns output tensor for the
stacked residual blocks.
last_point_ch: number channels at the last layer (before top)
input_shape: optional shape tuple, to be specified if you would
like to use a model with an input img resolution that is not
(224, 224, 3).
It should have exactly 3 inputs channels (224, 224, 3).
You can also omit this option if you would like
to infer input_shape from an input_tensor.
If you choose to include both input_tensor and input_shape then
input_shape will be used if they match, if the shapes
do not match then we will throw an error.
E.g. `(160, 160, 3)` would be one valid value.
alpha: controls the width of the network. This is known as the
depth multiplier in the MobileNetV3 paper, but the name is kept for
consistency with MobileNetV1 in Keras.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
model_type: MobileNetV3 is defined as two models: large and small. These
models are targeted at high and low resource use cases respectively.
minimalistic: In addition to large and small models this module also contains
so-called minimalistic models, these models have the same per-layer
dimensions characteristic as MobilenetV3 however, they don't utilize any
of the advanced blocks (squeeze-and-excite units, hard-swish, and 5x5
convolutions). While these models are less efficient on CPU, they are
much more performant on GPU/DSP.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of
`layers.Input()`)
to use as image input for the model.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
pooling: optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
dropout_rate: fraction of the input units to drop on the last layer
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid model type, argument for `weights`,
or invalid input shape when weights='imagenet'
"""
global backend, layers, models, keras_utils
backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as `"imagenet"` with `include_top` '
'as true, `classes` should be 1000')
# Determine proper input shape and default size.
# If both input_shape and input_tensor are used, they should match
if input_shape is not None and input_tensor is not None:
try:
is_input_t_tensor = backend.is_keras_tensor(input_tensor)
except ValueError:
try:
is_input_t_tensor = backend.is_keras_tensor(
keras_utils.get_source_inputs(input_tensor))
except ValueError:
raise ValueError('input_tensor: ', input_tensor,
'is not type input_tensor')
if is_input_t_tensor:
if backend.image_data_format == 'channels_first':
if backend.int_shape(input_tensor)[1] != input_shape[1]:
raise ValueError('input_shape: ', input_shape,
'and input_tensor: ', input_tensor,
'do not meet the same shape requirements')
else:
if backend.int_shape(input_tensor)[2] != input_shape[1]:
raise ValueError('input_shape: ', input_shape,
'and input_tensor: ', input_tensor,
'do not meet the same shape requirements')
else:
raise ValueError('input_tensor specified: ', input_tensor,
'is not a keras tensor')
# If input_shape is None, infer shape from input_tensor
if input_shape is None and input_tensor is not None:
try:
backend.is_keras_tensor(input_tensor)
except ValueError:
raise ValueError('input_tensor: ', input_tensor,
'is type: ', type(input_tensor),
'which is not a valid type')
if backend.is_keras_tensor(input_tensor):
if backend.image_data_format() == 'channels_first':
rows = backend.int_shape(input_tensor)[2]
cols = backend.int_shape(input_tensor)[3]
input_shape = (3, cols, rows)
else:
rows = backend.int_shape(input_tensor)[1]
cols = backend.int_shape(input_tensor)[2]
input_shape = (cols, rows, 3)
# If input_shape is None and input_tensor is None using standart shape
if input_shape is None and input_tensor is None:
input_shape = (None, None, 3)
if backend.image_data_format() == 'channels_last':
row_axis, col_axis = (0, 1)
else:
row_axis, col_axis = (1, 2)
rows = input_shape[row_axis]
cols = input_shape[col_axis]
if rows and cols and (rows < 32 or cols < 32):
raise ValueError('Input size must be at least 32x32; got `input_shape=' +
str(input_shape) + '`')
if weights == 'imagenet':
if minimalistic is False and alpha not in [0.75, 1.0] \
or minimalistic is True and alpha != 1.0:
raise ValueError('If imagenet weights are being loaded, '
'alpha can be one of `0.75`, `1.0` for non minimalistic'
' or `1.0` for minimalistic only.')
if rows != cols or rows != 224:
warnings.warn('`input_shape` is undefined or non-square, '
'or `rows` is not 224.'
' Weights for input shape (224, 224) will be'
' loaded as the default.')
if input_tensor is None:
img_input = layers.Input(shape=input_shape)
else:
if not backend.is_keras_tensor(input_tensor):
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1
if minimalistic:
kernel = 3
activation = relu
se_ratio = None
else:
kernel = 5
activation = hard_swish
se_ratio = 0.25
x = layers.ZeroPadding2D(padding=correct_pad(backend, img_input, 3),
name='Conv_pad')(img_input)
x = layers.Conv2D(16,
kernel_size=3,
strides=(2, 2),
padding='valid',
use_bias=False,
name='Conv')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name='Conv/BatchNorm')(x)
x = layers.Activation(activation)(x)
x = stack_fn(x, kernel, activation, se_ratio)
last_conv_ch = _depth(backend.int_shape(x)[channel_axis] * 6)
# if the width multiplier is greater than 1 we
# increase the number of output channels
if alpha > 1.0:
last_point_ch = _depth(last_point_ch * alpha)
x = layers.Conv2D(last_conv_ch,
kernel_size=1,
padding='same',
use_bias=False,
name='Conv_1')(x)
x = layers.BatchNormalization(axis=channel_axis,
epsilon=1e-3,
momentum=0.999,
name='Conv_1/BatchNorm')(x)
x = layers.Activation(activation)(x)
if include_top:
x = layers.GlobalAveragePooling2D()(x)
if channel_axis == 1:
x = layers.Reshape((last_conv_ch, 1, 1))(x)
else:
x = layers.Reshape((1, 1, last_conv_ch))(x)
x = layers.Conv2D(last_point_ch,
kernel_size=1,
padding='same',
name='Conv_2')(x)
x = layers.Activation(activation)(x)
if dropout_rate > 0:
x = layers.Dropout(dropout_rate)(x)
x = layers.Conv2D(classes,
kernel_size=1,
padding='same',
name='Logits')(x)
x = layers.Flatten()(x)
x = layers.Softmax(name='Predictions/Softmax')(x)
else:
if pooling == 'avg':
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
elif pooling == 'max':
x = layers.GlobalMaxPooling2D(name='max_pool')(x)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = keras_utils.get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = models.Model(inputs, x, name='MobilenetV3' + model_type)
# Load weights.
if weights == 'imagenet':
model_name = "{}{}_224_{}_float".format(
model_type, '_minimalistic' if minimalistic else '', str(alpha))
if include_top:
file_name = 'weights_mobilenet_v3_' + model_name + '.h5'
file_hash = WEIGHTS_HASHES[model_name][0]
else:
file_name = 'weights_mobilenet_v3_' + model_name + '_no_top.h5'
file_hash = WEIGHTS_HASHES[model_name][1]
weights_path = keras_utils.get_file(file_name,
BASE_WEIGHT_PATH + file_name,
cache_subdir='models',
file_hash=file_hash)
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def MobileNetV3Small(input_shape=None,
alpha=1.0,
minimalistic=False,
include_top=True,
weights='imagenet',
input_tensor=None,
classes=1000,
pooling=None,
dropout_rate=0.2,
**kwargs):
def stack_fn(x, kernel, activation, se_ratio):
def depth(d):
return _depth(d * alpha)
x = _inverted_res_block(x, 1, depth(16), 3, 2, se_ratio, relu, 0)
x = _inverted_res_block(x, 72. / 16, depth(24), 3, 2, None, relu, 1)
x = _inverted_res_block(x, 88. / 24, depth(24), 3, 1, None, relu, 2)
x = _inverted_res_block(x, 4, depth(40), kernel, 2, se_ratio, activation, 3)
x = _inverted_res_block(x, 6, depth(40), kernel, 1, se_ratio, activation, 4)
x = _inverted_res_block(x, 6, depth(40), kernel, 1, se_ratio, activation, 5)
x = _inverted_res_block(x, 3, depth(48), kernel, 1, se_ratio, activation, 6)
x = _inverted_res_block(x, 3, depth(48), kernel, 1, se_ratio, activation, 7)
x = _inverted_res_block(x, 6, depth(96), kernel, 2, se_ratio, activation, 8)
x = _inverted_res_block(x, 6, depth(96), kernel, 1, se_ratio, activation, 9)
x = _inverted_res_block(x, 6, depth(96), kernel, 1, se_ratio, activation, 10)
return x
return MobileNetV3(stack_fn,
1024,
input_shape,
alpha,
'small',
minimalistic,
include_top,
weights,
input_tensor,
classes,
pooling,
dropout_rate,
**kwargs)
def MobileNetV3Large(input_shape=None,
alpha=1.0,
minimalistic=False,
include_top=True,
weights='imagenet',
input_tensor=None,
classes=1000,
pooling=None,
dropout_rate=0.2,
**kwargs):
def stack_fn(x, kernel, activation, se_ratio):
def depth(d):
return _depth(d * alpha)
x = _inverted_res_block(x, 1, depth(16), 3, 1, None, relu, 0)
x = _inverted_res_block(x, 4, depth(24), 3, 2, None, relu, 1)
x = _inverted_res_block(x, 3, depth(24), 3, 1, None, relu, 2)
x = _inverted_res_block(x, 3, depth(40), kernel, 2, se_ratio, relu, 3)
x = _inverted_res_block(x, 3, depth(40), kernel, 1, se_ratio, relu, 4)
x = _inverted_res_block(x, 3, depth(40), kernel, 1, se_ratio, relu, 5)
x = _inverted_res_block(x, 6, depth(80), 3, 2, None, activation, 6)
x = _inverted_res_block(x, 2.5, depth(80), 3, 1, None, activation, 7)
x = _inverted_res_block(x, 2.3, depth(80), 3, 1, None, activation, 8)
x = _inverted_res_block(x, 2.3, depth(80), 3, 1, None, activation, 9)
x = _inverted_res_block(x, 6, depth(112), 3, 1, se_ratio, activation, 10)
x = _inverted_res_block(x, 6, depth(112), 3, 1, se_ratio, activation, 11)
x = _inverted_res_block(x, 6, depth(160), kernel, 2, se_ratio,
activation, 12)
x = _inverted_res_block(x, 6, depth(160), kernel, 1, se_ratio,
activation, 13)
x = _inverted_res_block(x, 6, depth(160), kernel, 1, se_ratio,
activation, 14)
return x
return MobileNetV3(stack_fn,
1280,
input_shape,
alpha,
'large',
minimalistic,
include_top,
weights,
input_tensor,
classes,
pooling,
dropout_rate,
**kwargs)
setattr(MobileNetV3Small, '__doc__', MobileNetV3.__doc__)
setattr(MobileNetV3Large, '__doc__', MobileNetV3.__doc__)