-
Notifications
You must be signed in to change notification settings - Fork 14
/
log1p.c
1295 lines (901 loc) · 37.2 KB
/
log1p.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Correctly rounded log1p(x) = log(1 + x)
*
* Author : Christoph Lauter (ENS Lyon)
*
* This file is part of the crlibm library developed by the Arenaire
* project at Ecole Normale Superieure de Lyon
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include "crlibm.h"
#include "crlibm_private.h"
#include "triple-double.h"
#include "log-td.h"
#define AVOID_FMA 0
void log1p_td_accurate(double *logh, double *logm, double *logl, double ed, int index,
double zh, double zm, double zl, double logih, double logim) {
double highPoly, t1h, t1l, t2h, t2l, t3h, t3l, t4h, t4l, t5h, t5l, t6h, t6l, t7h, t7l, t8h, t8l, t9h, t9l, t10h, t10l, t11h, t11l;
double t12h, t12l, t13h, t13l, t14h, t14l, zSquareh, zSquarem, zSquarel, zCubeh, zCubem, zCubel, higherPolyMultZh, higherPolyMultZm;
double higherPolyMultZl, zSquareHalfh, zSquareHalfm, zSquareHalfl, polyWithSquareh, polyWithSquarem, polyWithSquarel;
double polyh, polym, polyl, logil, logyh, logym, logyl, loghover, logmover, loglover, log2edhover, log2edmover, log2edlover;
double log2edh, log2edm, log2edl;
#if EVAL_PERF
crlibm_second_step_taken++;
#endif
/* Accurate phase:
Argument reduction is already done.
We must return logh, logm and logl representing the intermediate result in 118 bits precision.
We use a 14 degree polynomial, computing the first 3 (the first is 0) coefficients in triple double,
calculating the next 7 coefficients in double double arithmetics and the last in double.
*/
/* Start of the horner scheme */
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
highPoly = FMA(FMA(FMA(FMA(accPolyC14,zh,accPolyC13),zh,accPolyC12),zh,accPolyC11),zh,accPolyC10);
#else
highPoly = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14)));
#endif
/* We want to write
accPolyC3 + zh * (accPoly4 + zh * (accPoly5 + zh * (accPoly6 + zh * (accPoly7 + zh * (accPoly8 + zh * (accPoly9 + zh * highPoly))))));
( t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1 )
with all additions and multiplications in double double arithmetics
but we will produce intermediate results labelled t1h/t1l thru t14h/t14l
*/
Mul12(&t1h, &t1l, zh, highPoly);
Add22(&t2h, &t2l, accPolyC9h, accPolyC9l, t1h, t1l);
Mul22(&t3h, &t3l, zh, zm, t2h, t2l);
Add22(&t4h, &t4l, accPolyC8h, accPolyC8l, t3h, t3l);
Mul22(&t5h, &t5l, zh, zm, t4h, t4l);
Add22(&t6h, &t6l, accPolyC7h, accPolyC7l, t5h, t5l);
Mul22(&t7h, &t7l, zh, zm, t6h, t6l);
Add22(&t8h, &t8l, accPolyC6h, accPolyC6l, t7h, t7l);
Mul22(&t9h, &t9l, zh, zm, t8h, t8l);
Add22(&t10h, &t10l, accPolyC5h, accPolyC5l, t9h, t9l);
Mul22(&t11h, &t11l, zh, zm, t10h, t10l);
Add22(&t12h, &t12l, accPolyC4h, accPolyC4l, t11h, t11l);
Mul22(&t13h, &t13l, zh, zm, t12h, t12l);
Add22(&t14h, &t14l, accPolyC3h, accPolyC3l, t13h, t13l);
/* We must now prepare (zh + zm)^2 and (zh + zm)^3 as triple doubles */
Mul33(&zSquareh, &zSquarem, &zSquarel, zh, zm, zl, zh, zm, zl);
Mul33(&zCubeh, &zCubem, &zCubel, zh, zm, zl, zSquareh, zSquarem, zSquarel);
/* We can now multiplicate the middle and higher polynomial by z^3 */
Mul233(&higherPolyMultZh, &higherPolyMultZm, &higherPolyMultZl, t14h, t14l, zCubeh, zCubem, zCubel);
/* Multiply now z^2 by -1/2 (exact op) and add to middle and higher polynomial */
zSquareHalfh = zSquareh * -0.5;
zSquareHalfm = zSquarem * -0.5;
zSquareHalfl = zSquarel * -0.5;
Add33(&polyWithSquareh, &polyWithSquarem, &polyWithSquarel,
zSquareHalfh, zSquareHalfm, zSquareHalfl,
higherPolyMultZh, higherPolyMultZm, higherPolyMultZl);
/* Add now zh and zm to obtain the polynomial evaluation result */
Add33(&polyh, &polym, &polyl, zh, zm, zl, polyWithSquareh, polyWithSquarem, polyWithSquarel);
/* Reconstruct now log(y) = log(1 + z) - log(ri) by adding logih, logim, logil
logil has not been read to the time, do this first
*/
logil = argredtable[index].logil;
Add33(&logyh, &logym, &logyl, logih, logim, logil, polyh, polym, polyl);
/* Multiply log2 with E, i.e. log2h, log2m, log2l by ed
ed is always less than 2^(12) and log2h and log2m are stored with at least 12 trailing zeros
So multiplying naively is correct (up to 134 bits at least)
The final result is thus obtained by adding log2 * E to log(y)
*/
log2edhover = log2h * ed;
log2edmover = log2m * ed;
log2edlover = log2l * ed;
/* It may be necessary to renormalize the tabulated value (multiplied by ed) before adding
the to the log(y)-result
If needed, uncomment the following Renormalize3-Statement and comment out the copies
following it.
*/
/* Renormalize3(&log2edh, &log2edm, &log2edl, log2edhover, log2edmover, log2edlover); */
log2edh = log2edhover;
log2edm = log2edmover;
log2edl = log2edlover;
Add33(&loghover, &logmover, &loglover, log2edh, log2edm, log2edl, logyh, logym, logyl);
/* Since we can not guarantee in each addition and multiplication procedure that
the results are not overlapping, we must renormalize the result before handing
it over to the final rounding
*/
Renormalize3(logh,logm,logl,loghover,logmover,loglover);
}
/*************************************************************
*************************************************************
* ROUNDED TO NEAREST *
*************************************************************
*************************************************************/
double log1p_rn(double x){
db_number xdb, shdb, scaledb;
double yh, yl, ed, ri, logih, logim, yhrih, yhril, ylri, t1, t2, t3, t4, t5, t6, zh, zm, zl;
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
double sh, sl;
int E, index;
xdb.d=x;
/* Filter cases */
if ((xdb.i[HI] & 0x7fffffff) < 0x3c900000) {
/* We are less than 2^(-54) and return simply an adjusted x
This captures also the algebraic case x = 0
*/
return x;
}
if (((xdb.i[HI] & 0x80000000) != 0) && ((xdb.i[HI] & 0x7fffffff) >= 0x3ff00000)) {
/* We are less or equal than -1 (-inf and NaN, too),
we return -inf for -1 and NaN otherwise
*/
if (x == -1.0) return x/0.0;
return (x-x)/0.0;
}
if ((xdb.i[HI] & 0x7ff00000) == 0x7ff00000) {
/* We are +inf or NaN
If +inf, we return +inf (x+x)
If NaN, we return NaN (x+x)
*/
return x+x;
}
/* Test if |x| < 2^(-8)
If yes, short-circuit the range reduction
*/
if ((xdb.i[HI] & 0x7fffffff) < 0x3f700000) {
/* Use the polynomial p(zh + zl) approximating log(1+zh+zl) directly
Set E and index to values that read 0.0 in the accurate phase.
*/
logih = 0.0;
logim = 0.0;
index = 0;
ed = 0.0;
index = 0;
zh = x;
zm = 0.0;
zl = 0.0;
} else {
/* If we are here, |x| >= 2^(-8) and we must perform range reduction */
/* Compute first exactly
sh + sl = 1 + x
x can move over 1, so use a conditional Add12
*/
Add12Cond(sh,sl,1.0,x);
/* Transform higher order double to integer */
shdb.d = sh;
/* Extract exponent and mantissa
Do range reduction,
yielding to E holding the exponent and
y the mantissa between sqrt(2)/2 and sqrt(2)
*/
E = 0;
E += (shdb.i[HI]>>20)-1023; /* extract the exponent */
index = (shdb.i[HI] & 0x000fffff);
shdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
index = (index + (1<<(20-L-1))) >> (20-L);
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
shdb.i[HI] -= 0x00100000;
E++;
}
/* Transform shdb to yh */
yh = shdb.d;
/* Compute the index to the table */
index = index & INDEXMASK;
/* Cast integer E into double ed for multiplication later */
ed = (double) E;
/*
Read tables:
Read one float for ri
Read the first two doubles for -log(r_i) (out of three)
Organization of the table:
one struct entry per index, the struct entry containing
r, logih, logim and logil in this order
*/
ri = argredtable[index].ri;
/*
Actually we don't need the logarithm entries now
Move the following two lines to the eventual reconstruction
As long as we don't have any if in the following code, we can overlap
memory access with calculations
*/
logih = argredtable[index].logih;
logim = argredtable[index].logim;
/* Test if we have a simple range reduction or a complicated one
Simple range reduction for x < 0: x + 1 is exact, sl = 0 exactly
Simple range reduction for x > 2^(125) (sh > 2^(125)): x + 1 is not exact but its error less than 2^(-125)
Complicated range reduction: other cases
*/
if ((sl == 0.0) || (E > 125)) {
/* Simple range reduction */
Mul12(&yhrih, &yhril, yh, ri);
t1 = yhrih - 1.0;
Add12Cond(zh, zm, t1, yhril);
zl = 0.0;
} else {
/* Complicated range reduction; E <= 125 */
/* Scale sl accordingly to sh, from which the exponent was extracted
We form first 2^(-E) and multiply sl with this value; this gives yl.
*/
scaledb.i[HI] = (-E + 1023) << 20;
scaledb.i[LO] = 0;
yl = sl * scaledb.d;
/* Do complicated range reduction:
zh + zm + zl = (yh + yl) * ri - 1.0
We use zh + zm in the quick phase and zh + zm + zl in the accurate phase
The multiplication yl * ri is exact because yl contains at most 9 bits and
ri contains at most 24 bits.
The substraction yhrih - 1.0 is exact as per Sterbenz' lemma.
*/
Mul12(&yhrih,&yhril,yh,ri);
ylri = yl * ri;
t1 = yhrih - 1.0;
/* The unnormalized triple-double t1 + yhril + ylri is equal to (yh + yl) * ri - 1.0
As t1 can move over yhril and yhri can move over ylri, we normalize first these
values pairwise with Add12Conds. Then we renormalize the pairs by a
"inverted" (A.E.) Renormalize3.
*/
Add12Cond(t2,t3,yhril,ylri);
Add12Cond(t4,t5,t1,t2);
Add12Cond(t6,zl,t3,t5);
Add12Cond(zh,zm,t4,t6);
}
}
/*
Polynomial evaluation
Use a 7 degree polynomial
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zm
using an ad hoc method
*/
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
#else
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
#endif
Mul12(&zhSquareh, &zhSquarel, zh, zh);
polyUpper = polyHorner * (zh * zhSquareh);
zhSquareHalfh = zhSquareh * -0.5;
zhSquareHalfl = zhSquarel * -0.5;
Add12(t1h, t1l, polyUpper, -1 * (zh * zm));
Add22(&t2h, &t2l, zh, zm, zhSquareHalfh, zhSquareHalfl);
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
/* Reconstruction
Read logih and logim in the tables (already done)
Compute log(x) = E * log(2) + log(1+z) - log(ri)
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
Carry out everything in double double precision
*/
/*
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
Multiplication of ed (double E) and log2h is thus correct
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
is enough for the accurate phase
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
triple double values. We have to take it into account for the accurate phase
basic procedures for addition and multiplication
The condition on the next Add12 is verified as log2m is smaller than log2h
and both are scaled by ed
*/
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
/* Add logih and logim to ph and pl
We must use conditioned Add22 as logih can move over ph
*/
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
/* Rounding test and eventual return or call to the accurate function */
if(E==0)
roundcst = ROUNDCST1;
else
roundcst = ROUNDCST2;
if(logh == (logh + (logm * roundcst)))
return logh;
else
{
#if DEBUG
printf("Going for Accurate Phase for x=%1.50e\n",x);
#endif
log1p_td_accurate(&logh, &logm, &logl, ed, index, zh, zm, zl, logih, logim);
ReturnRoundToNearest3(logh, logm, logl);
} /* Accurate phase launched */
}
double log1p_ru(double x) {
db_number xdb, shdb, scaledb;
double yh, yl, ed, ri, logih, logim, yhrih, yhril, ylri, t1, t2, t3, t4, t5, t6, zh, zm, zl;
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
double sh, sl;
int E, index;
xdb.d=x;
/* Filter cases */
if ((xdb.i[HI] & 0x7fffffff) < 0x3c900000) {
/* We are less than 2^(-54) and return simply an adjusted x
If x = 0, the result is algebraic and equal to 0.
The series for log(1 + x) = x - 1/2 * x^2 + ... is alternated
and converges in this interval.
The truncation rest -1/2 * x^2 + 1/3 * x^3 - ... is
always negative, so log(1 + x) is always less than x but less than
1 ulp of x away.
We round up, so we return x.
*/
return x;
}
if (((xdb.i[HI] & 0x80000000) != 0) && ((xdb.i[HI] & 0x7fffffff) >= 0x3ff00000)) {
/* We are less or equal than -1 (-inf and NaN, too),
we return -inf for -1 and NaN otherwise
*/
if (x == -1.0) return x/0.0;
return (x-x)/0.0;
}
if ((xdb.i[HI] & 0x7ff00000) == 0x7ff00000) {
/* We are +inf or NaN
If +inf, we return +inf (x+x)
If NaN, we return NaN (x+x)
*/
return x+x;
}
/* Test if |x| < 2^(-8)
If yes, short-circuit the range reduction
*/
if ((xdb.i[HI] & 0x7fffffff) < 0x3f700000) {
/* Use the polynomial p(zh + zl) approximating log(1+zh+zl) directly
Set E and index to values that read 0.0 in the accurate phase.
*/
logih = 0.0;
logim = 0.0;
index = 0;
ed = 0.0;
index = 0;
zh = x;
zm = 0.0;
zl = 0.0;
} else {
/* If we are here, |x| >= 2^(-8) and we must perform range reduction */
/* Compute first exactly
sh + sl = 1 + x
x can move over 1, so use a conditional Add12
*/
Add12Cond(sh,sl,1.0,x);
/* Transform higher order double to integer */
shdb.d = sh;
/* Extract exponent and mantissa
Do range reduction,
yielding to E holding the exponent and
y the mantissa between sqrt(2)/2 and sqrt(2)
*/
E = 0;
E += (shdb.i[HI]>>20)-1023; /* extract the exponent */
index = (shdb.i[HI] & 0x000fffff);
shdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
index = (index + (1<<(20-L-1))) >> (20-L);
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
shdb.i[HI] -= 0x00100000;
E++;
}
/* Transform shdb to yh */
yh = shdb.d;
/* Compute the index to the table */
index = index & INDEXMASK;
/* Cast integer E into double ed for multiplication later */
ed = (double) E;
/*
Read tables:
Read one float for ri
Read the first two doubles for -log(r_i) (out of three)
Organization of the table:
one struct entry per index, the struct entry containing
r, logih, logim and logil in this order
*/
ri = argredtable[index].ri;
/*
Actually we don't need the logarithm entries now
Move the following two lines to the eventual reconstruction
As long as we don't have any if in the following code, we can overlap
memory access with calculations
*/
logih = argredtable[index].logih;
logim = argredtable[index].logim;
/* Test if we have a simple range reduction or a complicated one
Simple range reduction for x < 0: x + 1 is exact, sl = 0 exactly
Simple range reduction for x > 2^(125) (sh > 2^(125)): x + 1 is not exact but its error less than 2^(-125)
Complicated range reduction: other cases
*/
if ((sl == 0.0) || (E > 125)) {
/* Simple range reduction */
Mul12(&yhrih, &yhril, yh, ri);
t1 = yhrih - 1.0;
Add12Cond(zh, zm, t1, yhril);
zl = 0.0;
} else {
/* Complicated range reduction; E <= 125 */
/* Scale sl accordingly to sh, from which the exponent was extracted
We form first 2^(-E) and multiply sl with this value; this gives yl.
*/
scaledb.i[HI] = (-E + 1023) << 20;
scaledb.i[LO] = 0;
yl = sl * scaledb.d;
/* Do complicated range reduction:
zh + zm + zl = (yh + yl) * ri - 1.0
We use zh + zm in the quick phase and zh + zm + zl in the accurate phase
The multiplication yl * ri is exact because yl contains at most 9 bits and
ri contains at most 24 bits.
The substraction yhrih - 1.0 is exact as per Sterbenz' lemma.
*/
Mul12(&yhrih,&yhril,yh,ri);
ylri = yl * ri;
t1 = yhrih - 1.0;
/* The unnormalized triple-double t1 + yhril + ylri is equal to (yh + yl) * ri - 1.0
As t1 can move over yhril and yhri can move over ylri, we normalize first these
values pairwise with Add12Conds. Then we renormalize the pairs by a
"inverted" (A.E.) Renormalize3.
*/
Add12Cond(t2,t3,yhril,ylri);
Add12Cond(t4,t5,t1,t2);
Add12Cond(t6,zl,t3,t5);
Add12Cond(zh,zm,t4,t6);
}
}
/*
Polynomial evaluation
Use a 7 degree polynomial
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zm
using an ad hoc method
*/
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
#else
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
#endif
Mul12(&zhSquareh, &zhSquarel, zh, zh);
polyUpper = polyHorner * (zh * zhSquareh);
zhSquareHalfh = zhSquareh * -0.5;
zhSquareHalfl = zhSquarel * -0.5;
Add12(t1h, t1l, polyUpper, -1 * (zh * zm));
Add22(&t2h, &t2l, zh, zm, zhSquareHalfh, zhSquareHalfl);
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
/* Reconstruction
Read logih and logim in the tables (already done)
Compute log(x) = E * log(2) + log(1+z) - log(ri)
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
Carry out everything in double double precision
*/
/*
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
Multiplication of ed (double E) and log2h is thus correct
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
is enough for the accurate phase
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
triple double values. We have to take it into account for the accurate phase
basic procedures for addition and multiplication
The condition on the next Add12 is verified as log2m is smaller than log2h
and both are scaled by ed
*/
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
/* Add logih and logim to ph and pl
We must use conditioned Add22 as logih can move over ph
*/
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
/* Rounding test and eventual return or call to the accurate function */
if(E==0)
roundcst = RDROUNDCST1;
else
roundcst = RDROUNDCST2;
TEST_AND_RETURN_RU(logh, logm, roundcst);
#if DEBUG
printf("Going for Accurate Phase for x=%1.50e\n",x);
#endif
log1p_td_accurate(&logh, &logm, &logl, ed, index, zh, zm, zl, logih, logim);
ReturnRoundUpwards3(logh, logm, logl);
}
double log1p_rd(double x) {
db_number xdb, shdb, scaledb;
double yh, yl, ed, ri, logih, logim, yhrih, yhril, ylri, t1, t2, t3, t4, t5, t6, zh, zm, zl;
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
double sh, sl;
int E, index;
xdb.d=x;
/* Filter cases */
if ((xdb.i[HI] & 0x7fffffff) < 0x3c900000) {
/* We are less than 2^(-54) and return simply an adjusted x
If x = 0, the result is algebraic and equal to 0.
The series for log(1 + x) = x - 1/2 * x^2 + ... is alternated
and converges in this interval.
The truncation rest -1/2 * x^2 + 1/3 * x^3 - ... is
always negative, so log(1 + x) is always less than x but less than
1 ulp of x away.
We round down, so we return x - 1ulp;
*/
if (x == 0.0) return x;
if (x > 0) {
xdb.l--;
} else {
xdb.l++;
}
return xdb.d;
}
if (((xdb.i[HI] & 0x80000000) != 0) && ((xdb.i[HI] & 0x7fffffff) >= 0x3ff00000)) {
/* We are less or equal than -1 (-inf and NaN, too),
we return -inf for -1 and NaN otherwise
*/
if (x == -1.0) return x/0.0;
return (x-x)/0.0;
}
if ((xdb.i[HI] & 0x7ff00000) == 0x7ff00000) {
/* We are +inf or NaN
If +inf, we return +inf (x+x)
If NaN, we return NaN (x+x)
*/
return x+x;
}
/* Test if |x| < 2^(-8)
If yes, short-circuit the range reduction
*/
if ((xdb.i[HI] & 0x7fffffff) < 0x3f700000) {
/* Use the polynomial p(zh + zl) approximating log(1+zh+zl) directly
Set E and index to values that read 0.0 in the accurate phase.
*/
logih = 0.0;
logim = 0.0;
index = 0;
ed = 0.0;
index = 0;
zh = x;
zm = 0.0;
zl = 0.0;
} else {
/* If we are here, |x| >= 2^(-8) and we must perform range reduction */
/* Compute first exactly
sh + sl = 1 + x
x can move over 1, so use a conditional Add12
*/
Add12Cond(sh,sl,1.0,x);
/* Transform higher order double to integer */
shdb.d = sh;
/* Extract exponent and mantissa
Do range reduction,
yielding to E holding the exponent and
y the mantissa between sqrt(2)/2 and sqrt(2)
*/
E = 0;
E += (shdb.i[HI]>>20)-1023; /* extract the exponent */
index = (shdb.i[HI] & 0x000fffff);
shdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
index = (index + (1<<(20-L-1))) >> (20-L);
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
shdb.i[HI] -= 0x00100000;
E++;
}
/* Transform shdb to yh */
yh = shdb.d;
/* Compute the index to the table */
index = index & INDEXMASK;
/* Cast integer E into double ed for multiplication later */
ed = (double) E;
/*
Read tables:
Read one float for ri
Read the first two doubles for -log(r_i) (out of three)
Organization of the table:
one struct entry per index, the struct entry containing
r, logih, logim and logil in this order
*/
ri = argredtable[index].ri;
/*
Actually we don't need the logarithm entries now
Move the following two lines to the eventual reconstruction
As long as we don't have any if in the following code, we can overlap
memory access with calculations
*/
logih = argredtable[index].logih;
logim = argredtable[index].logim;
/* Test if we have a simple range reduction or a complicated one
Simple range reduction for x < 0: x + 1 is exact, sl = 0 exactly
Simple range reduction for x > 2^(125) (sh > 2^(125)): x + 1 is not exact but its error less than 2^(-125)
Complicated range reduction: other cases
*/
if ((sl == 0.0) || (E > 125)) {
/* Simple range reduction */
Mul12(&yhrih, &yhril, yh, ri);
t1 = yhrih - 1.0;
Add12Cond(zh, zm, t1, yhril);
zl = 0.0;
} else {
/* Complicated range reduction; E <= 125 */
/* Scale sl accordingly to sh, from which the exponent was extracted
We form first 2^(-E) and multiply sl with this value; this gives yl.
*/
scaledb.i[HI] = (-E + 1023) << 20;
scaledb.i[LO] = 0;
yl = sl * scaledb.d;
/* Do complicated range reduction:
zh + zm + zl = (yh + yl) * ri - 1.0
We use zh + zm in the quick phase and zh + zm + zl in the accurate phase
The multiplication yl * ri is exact because yl contains at most 9 bits and
ri contains at most 24 bits.
The substraction yhrih - 1.0 is exact as per Sterbenz' lemma.
*/
Mul12(&yhrih,&yhril,yh,ri);
ylri = yl * ri;
t1 = yhrih - 1.0;
/* The unnormalized triple-double t1 + yhril + ylri is equal to (yh + yl) * ri - 1.0
As t1 can move over yhril and yhri can move over ylri, we normalize first these
values pairwise with Add12Conds. Then we renormalize the pairs by a
"inverted" (A.E.) Renormalize3.
*/
Add12Cond(t2,t3,yhril,ylri);
Add12Cond(t4,t5,t1,t2);
Add12Cond(t6,zl,t3,t5);
Add12Cond(zh,zm,t4,t6);
}
}
/*
Polynomial evaluation
Use a 7 degree polynomial
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zm
using an ad hoc method
*/
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
#else
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
#endif
Mul12(&zhSquareh, &zhSquarel, zh, zh);
polyUpper = polyHorner * (zh * zhSquareh);
zhSquareHalfh = zhSquareh * -0.5;
zhSquareHalfl = zhSquarel * -0.5;
Add12(t1h, t1l, polyUpper, -1 * (zh * zm));
Add22(&t2h, &t2l, zh, zm, zhSquareHalfh, zhSquareHalfl);
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
/* Reconstruction
Read logih and logim in the tables (already done)
Compute log(x) = E * log(2) + log(1+z) - log(ri)
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
Carry out everything in double double precision
*/
/*
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
Multiplication of ed (double E) and log2h is thus correct
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
is enough for the accurate phase
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
triple double values. We have to take it into account for the accurate phase
basic procedures for addition and multiplication
The condition on the next Add12 is verified as log2m is smaller than log2h
and both are scaled by ed
*/
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
/* Add logih and logim to ph and pl
We must use conditioned Add22 as logih can move over ph
*/
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
/* Rounding test and eventual return or call to the accurate function */
if(E==0)
roundcst = RDROUNDCST1;
else
roundcst = RDROUNDCST2;
TEST_AND_RETURN_RD(logh, logm, roundcst);