forked from aloctavodia/Doing_bayesian_data_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_BayesUpdate.py
61 lines (52 loc) · 2.1 KB
/
04_BayesUpdate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Bayesian updating of beliefs about the bias of a coin. The prior and posterior
distributions indicate probability masses at discrete candidate values of theta.
"""
import matplotlib.pyplot as plt
import numpy as np
# theta is the vector of candidate values for the parameter theta.
# n_theta_vals is the number of candidate theta values.
# To produce the examples in the book, set n_theta_vals to either 3 or 63.
n_theta_vals = 3.
# Now make the vector of theta values:
theta = np.linspace(1/(n_theta_vals +1), n_theta_vals /(n_theta_vals +1), n_theta_vals )
# p_theta is the vector of prior probabilities on the theta values.
p_theta = np.minimum(theta, 1-theta) # Makes a triangular belief distribution.
p_theta = p_theta / np.sum(p_theta) # Makes sure that beliefs sum to 1.
# Specify the data. To produce the examples in the book, use either
# data = np.repeat([1,0], [3, 9]) or data = np.repeat([1,0], [1, 11])
data = np.repeat([1, 0], [3, 9])
n_heads = np.sum(data)
n_tails = len(data) - n_heads
# Compute the likelihood of the data for each value of theta:
p_data_given_theta = theta**n_heads * (1-theta)**n_tails
# Compute the posterior:
p_data = np.sum(p_data_given_theta * p_theta)
p_theta_given_data = p_data_given_theta * p_theta / p_data # This is Bayes' rule!
# Plot the results.
plt.figure(figsize=(12, 11))
plt.subplots_adjust(hspace=0.7)
# Plot the prior:
plt.subplot(3, 1, 1)
plt.stem(theta, p_theta, markerfmt=' ')
plt.xlim(0, 1)
plt.xlabel('$\\theta$')
plt.ylabel('$P(\\theta)$')
plt.title('Prior')
# Plot the likelihood:
plt.subplot(3, 1, 2)
plt.stem(theta, p_data_given_theta, markerfmt=' ')
plt.xlim(0, 1)
plt.xlabel('$\\theta$')
plt.ylabel('$P(D|\\theta)$')
plt.title('Likelihood')
plt.text(0.6, np.max(p_data_given_theta)/2, 'D = %sH,%sT' % (n_heads, n_tails))
# Plot the posterior:
plt.subplot(3, 1, 3)
plt.stem(theta, p_theta_given_data, markerfmt=' ')
plt.xlim(0, 1)
plt.xlabel('$\\theta$')
plt.ylabel('$P(\\theta|D)$')
plt.title('Posterior')
plt.text(0.6, np.max(p_theta_given_data)/2, 'P(D) = %g' % p_data)
plt.savefig('Figure_4.1.png')