-
Notifications
You must be signed in to change notification settings - Fork 23
/
merge_lora_checkpoint.py
54 lines (42 loc) · 1.45 KB
/
merge_lora_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import sys
import torch
from peft import PeftConfig, PeftModel
from transformers import LlamaForCausalLM # noqa: F402
from transformers import AutoModelForCausalLM, LlamaTokenizer
model_name = sys.argv[1]
peft_config = PeftConfig.from_pretrained(model_name)
base_model = peft_config.base_model_name_or_path
print("Loading model", base_model)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
base_model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()
lora_model = PeftModel.from_pretrained(
base_model,
model_name,
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight
assert torch.allclose(first_weight_old, first_weight)
# merge weights - new merging method from peft
lora_model = lora_model.merge_and_unload()
lora_model.train(False)
# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)
lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
output_name = model_name + "-merged"
LlamaForCausalLM.save_pretrained(
base_model, output_name, state_dict=deloreanized_sd, max_shard_size="400MB"
)
tokenizer.save_pretrained(output_name)