-
Notifications
You must be signed in to change notification settings - Fork 3
/
kge_model.py
executable file
·120 lines (95 loc) · 3.66 KB
/
kge_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import logging
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
class KGEModel(nn.Module):
def __init__(self, args, model_name):
super(KGEModel, self).__init__()
self.model_name = model_name
self.embedding_range = torch.Tensor([(args.gamma + args.epsilon) / args.hidden_dim])
self.gamma = nn.Parameter(
torch.Tensor([args.gamma]),
requires_grad=False
)
def forward(self, sample, relation_embedding, entity_embedding, neg=True):
if not neg:
head = torch.index_select(
entity_embedding,
dim=0,
index=sample[:, 0]
).unsqueeze(1)
relation = torch.index_select(
relation_embedding,
dim=0,
index=sample[:, 1]
).unsqueeze(1)
tail = torch.index_select(
entity_embedding,
dim=0,
index=sample[:, 2]
).unsqueeze(1)
else:
head_part, tail_part = sample
batch_size = head_part.shape[0]
head = torch.index_select(
entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
relation = torch.index_select(
relation_embedding,
dim=0,
index=head_part[:, 1]
).unsqueeze(1)
if tail_part == None:
tail = entity_embedding.unsqueeze(0)
else:
negative_sample_size = tail_part.size(1)
tail = torch.index_select(
entity_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
model_func = {
'TransE': self.TransE,
'DistMult': self.DistMult,
'ComplEx': self.ComplEx,
'RotatE': self.RotatE,
}
score = model_func[self.model_name](head, relation, tail)
return score
def TransE(self, head, relation, tail):
score = (head + relation) - tail
score = self.gamma.item() - torch.norm(score, p=1, dim=2)
return score
def DistMult(self, head, relation, tail):
score = (head * relation) * tail
score = score.sum(dim = 2)
return score
def ComplEx(self, head, relation, tail):
re_head, im_head = torch.chunk(head, 2, dim=2)
re_relation, im_relation = torch.chunk(relation, 2, dim=2)
re_tail, im_tail = torch.chunk(tail, 2, dim=2)
re_score = re_head * re_relation - im_head * im_relation
im_score = re_head * im_relation + im_head * re_relation
score = re_score * re_tail + im_score * im_tail
score = score.sum(dim = 2)
return score
def RotatE(self, head, relation, tail):
pi = 3.14159265358979323846
re_head, im_head = torch.chunk(head, 2, dim=2)
re_tail, im_tail = torch.chunk(tail, 2, dim=2)
#Make phases of relations uniformly distributed in [-pi, pi]
phase_relation = relation/(self.embedding_range.item()/pi)
re_relation = torch.cos(phase_relation)
im_relation = torch.sin(phase_relation)
re_score = re_head * re_relation - im_head * im_relation
im_score = re_head * im_relation + im_head * re_relation
re_score = re_score - re_tail
im_score = im_score - im_tail
score = torch.stack([re_score, im_score], dim = 0)
score = score.norm(dim = 0)
score = self.gamma.item() - score.sum(dim = 2)
return score