-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
199 lines (168 loc) · 7.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch, torch.nn as nn
from tqdm import tqdm
from sklearn.metrics import roc_curve, auc
class Model_fn():
def __init__(self, args):
self.device = args.device
self.loss_fun = torch.nn.BCELoss()
self.train_num = 0
def fit(self, train_loader, optimizer):
train_loader.dataset.reset()
self.train()
self.to(self.device)
description = "Training (the {:d}-batch): tra_Loss = {:.4f}"
loss_total, avg_loss = 0.0, 0.0
epochs = tqdm(train_loader, leave=False, desc='local_update')
for idx, batch in enumerate(epochs):
optimizer.zero_grad()
batch = to_device(batch, self.device)
output = self(batch)
label = batch['label'].float()
loss = self.loss_fun(output.squeeze(-1), label)
loss.backward()
optimizer.step()
loss_total += loss.item()
avg_loss = loss_total / (idx + 1)
epochs.set_description(description.format(idx + 1, avg_loss))
self.train_num = len(train_loader.dataset)
def evaluate(self, test_loader, recorder=None):
test_loader.dataset.reset()
self.eval()
self.to(self.device)
loss_total = 0.0
label, pred = [], []
with torch.no_grad():
with tqdm(test_loader) as epochs:
for idx, batch in enumerate(epochs):
batch = to_device(batch, self.device)
output = self(batch)
pred += output.squeeze(-1).tolist()
label += batch['label'].tolist()
loss = self.loss_fun(
output.squeeze(-1), batch['label'].float())
loss_total += loss.item()
loss_avg = loss_total/len(test_loader)
fpr, tpr, _ = roc_curve(label, pred)
auc_score = auc(fpr, tpr)
recorder['loss'].append(loss_avg)
recorder['auc'].append(auc_score)
class DIN(nn.Module, Model_fn):
def __init__(self, args):
super(DIN, self).__init__()
self.args = args
self.features = args.features
self._estimator_type = 'classifier'
self.num_inputs = nn.ModuleDict()
self.embeddings = nn.ModuleDict()
self.cat_embeddings = nn.ModuleDict()
self.seq_embeddings = nn.ModuleDict()
cat_size = 0
for embed_key in args.embedding.keys():
self.embeddings[embed_key] = nn.Embedding(
args.embedding[embed_key]['num'], args.embedding[embed_key]['size'])
for feats_key, feats_value in args.use_feats.items():
if embed_key in feats_key:
if feats_value == 'cat_feats':
self.cat_embeddings[feats_key] = self.embeddings[embed_key]
if feats_value == 'seq_feats':
self.seq_embeddings[feats_key] = self.embeddings[embed_key]
cat_size += args.embedding[embed_key]['size']
args.item_embed_size = sum(
[v['size'] for k, v in args.embedding.items() if 'item' in k])
for key in self.features['num_feats']:
self.num_inputs[key] = nn.Identity()
cat_size += 1
self.pooling = Pooling('attention', dim=1, args=args)
self.mlp = MLP(cat_size, self.args)
Model_fn.__init__(self, args)
def forward(self, inputs):
embedded = {}
for key, module in self.num_inputs.items():
out = module(inputs[key]).unsqueeze(-1)
embedded[key] = out
can_embedded, exp_embedded, ipv_embedded = [], [], []
for key, module in self.cat_embeddings.items():
out = module(inputs[key])
if 'cand_item' in key:
can_embedded.append(out)
else:
embedded[key] = out
embedded['cand_item'] = torch.cat(can_embedded, dim=1)
for key, module in self.seq_embeddings.items():
seq_out = module(inputs[key])
if 'exp_item' in key:
exp_embedded.append(seq_out)
elif 'ipv_item' in key:
ipv_embedded.append(seq_out)
exp_seq = torch.cat(exp_embedded, dim=-1)
exp_out = self.pooling(exp_seq, embedded['cand_item'])
embedded['exp_item'] = exp_out
ipv_seq = torch.cat(ipv_embedded, dim=-1)
ipv_out = self.pooling(ipv_seq, embedded['cand_item'])
embedded['ipv_item'] = ipv_out
emb_cat = torch.cat(list(embedded.values()), dim=1)
score_logits = -torch.log(1/inputs['score'].unsqueeze(-1)-1)
output = torch.sigmoid(self.mlp(emb_cat)+score_logits)
return output
class MLP(nn.Module):
def __init__(self, input_size, args):
super(MLP, self).__init__()
self.fc1 = nn.Sequential(
nn.Linear(input_size, args.hidden_size[0]),
nn.BatchNorm1d(args.hidden_size[0])
)
self.fc2 = nn.Sequential(
nn.Linear(args.hidden_size[0], args.hidden_size[1]),
nn.BatchNorm1d(args.hidden_size[1])
)
self.fc3 = nn.Linear(args.hidden_size[1], 1)
self.relu = torch.nn.ReLU()
self.dropout = nn.Dropout(args.dropout)
def forward(self, input):
x = self.dropout(self.relu(self.fc1(input)))
x = self.dropout(self.relu(self.fc2(x)))
output = self.fc3(x)
return output
class Pooling(nn.Module):
def __init__(self, pooling_type, dim=1, **kwargs):
super(Pooling, self).__init__()
self.dim = dim
self.pooling_type = pooling_type
if self.pooling_type == 'mean':
self.pooling = torch.mean
if self.pooling_type == 'sum':
self.pooling = torch.sum
if self.pooling_type == 'attention':
self.pooling = Attention_Pooling(kwargs['args'])
def forward(self, x, target_item=None):
if self.pooling_type != 'attention':
output = self.pooling(x, self.dim)
else:
output = self.pooling(x, target_item, self.dim)
return output
class Attention_Pooling(nn.Module):
def __init__(self, args):
super(Attention_Pooling, self).__init__()
self.attention_unit = Attention_Unit(args)
def forward(self, seq, target_item, dim):
target_items = target_item.unsqueeze(-2).expand_as(seq)
weights = self.attention_unit(target_items, seq)
weights = torch.softmax(weights, dim=1)
out = weights*seq
return out.sum(dim=dim)
class Attention_Unit(nn.Module):
def __init__(self, args):
super(Attention_Unit, self).__init__()
self.fc1 = nn.Linear(args.item_embed_size*4, args.item_embed_size)
self.fc2 = nn.Linear(args.item_embed_size, 1)
self.activation = torch.nn.ReLU()
def forward(self, seq, target_item):
emb_cat = torch.cat(
(target_item, seq, target_item-seq, target_item*seq), dim=-1)
x = self.activation(self.fc1(emb_cat))
weight = self.fc2(x)
return weight
def to_device(x, device):
for key, value in x.items():
x[key] = value.to(device)
return x