-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
90 lines (65 loc) · 2.14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pandas_datareader as data
from keras.models import load_model
import streamlit as st
start= '2010-01-01'
end = '2020-12-31'
st.title('Stock Prediction')
user_input=st.text_input('Enter Stock Ticker','AAPL')
df= data.DataReader(user_input,'yahoo',start,end)
#discribing data
st.subheader('Data from 2010 - 2019')
st.write(df.describe())
#visualization
st.subheader('Closing Price vs Time Chart')
fig = plt.figure(figsize = (12,6))
plt.plot(df.Close)
st.pyplot(fig)
st.subheader('Closing Price vs Time Chart With 100 MA')
ma100=df.Close.rolling(100).mean()
fig = plt.figure(figsize=(12, 6))
plt.plot(ma100)
plt.plot(df.Close)
st.pyplot(fig)
st.subheader('Closing Price vs Time Chart With 100MA & 200MA')
ma100 = df.Close.rolling(100).mean()
ma200 = df.Close.rolling(200).mean()
fig = plt.figure(figsize = (12,6))
plt.plot(ma100,'r')
plt.plot(ma200,'g')
plt.plot(df.Close , 'b')
st.pyplot(fig)
#splitting Data into Training and Testing
data_training = pd.DataFrame(df['Close'][0:int(len(df)*0.70)])
data_testing = pd.DataFrame(df['Close'][int(len(df)*0.70):int(len(df))])
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
data_training_array= scaler.fit_transform(data_training)
#load my model
model = load_model('keras_model.h5')
#testing part
past_100_days=data_training.tail(100)
final_df=past_100_days.append(data_testing, ignore_index=True)
input_data=scaler.fit_transform(final_df)
x_test=[]
y_test=[]
for i in range(100,input_data.shape[0]):
x_test.append(input_data[i-100:i])
y_test.append(input_data[i,0])
x_test,y_test=np.array(x_test),np.array(y_test)
y_predicted =model.predict(x_test)
scaler = scaler.scale_
scale_factor=1/scaler[0]
y_predicted=y_predicted*scale_factor
y_test=y_test*scale_factor
#final graph
st.subheader('Prediction vs Original')
fig2 = plt.figure(figsize=(12,6))
plt.plot(y_test,'b',label='Original Price')
plt.plot(y_predicted,'r',label='Predicted Price')
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
st.pyplot(fig2)