-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdetection.py
190 lines (163 loc) · 7.68 KB
/
detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import torch
import tensorrt as trt
import numpy as np
import json
from collections import OrderedDict, namedtuple
from yolo_utils import non_max_suppression, scale_boxes
from glob import glob
import cv2
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
class TensorRtPredictor:
def __init__(self, engine_path='checkpoints/best.engine',
img_size=(640, 640), conf_thres=0.35, iou_thres=0.45, classes=None, agnostic_nms=False, maxdet=1000):
device = torch.device('cuda:0')
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.INFO)
with open(engine_path, 'rb') as f, trt.Runtime(logger) as runtime:
meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length
metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata
model = runtime.deserialize_cuda_engine(f.read())
context = model.create_execution_context()
bindings = OrderedDict()
output_names = []
fp16 = False # default updated below
dynamic = False
for i in range(model.num_bindings):
name = model.get_binding_name(i)
dtype = trt.nptype(model.get_binding_dtype(i))
if model.binding_is_input(i):
if -1 in tuple(model.get_binding_shape(i)): # dynamic
dynamic = True
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
if dtype == np.float16:
fp16 = True
else: # output
output_names.append(name)
shape = tuple(context.get_binding_shape(i))
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
self.__dict__.update(locals())
self.conf_thres = conf_thres
self.iou_thres = iou_thres
self.classes = classes
self.agnostic_nms = agnostic_nms
self.maxdet = maxdet
self.img_size = img_size
def preprocess(self, im):
processed_img, ratio, (dw, dh) = letterbox(im, new_shape=self.img_size, color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True, stride=32)
processed_img = processed_img.transpose(2, 0, 1).astype(np.float32)
processed_img = np.ascontiguousarray(processed_img)
# print(processed_img.shape)
processed_img /= 255.0
processed_img = torch.from_numpy(processed_img).unsqueeze(0).to(self.device)
return processed_img
def __call__(self, im):
ori_shape = im.shape
im = self.preprocess(im)
if self.dynamic and im.shape != self.bindings['images'].shape:
i = self.model.get_binding_index('images')
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings['images'].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs['images'] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
if isinstance(y, (list, tuple)):
pred = self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
pred = self.from_numpy(y)
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, self.classes, self.agnostic_nms, max_det=self.maxdet)
pred = pred[0]
# return pred.cpu().numpy()
if len(pred) == 0:
return np.array([])
else:
pred[:, :4] = scale_boxes(self.img_size, pred[:, :4], ori_shape).round()
return pred.cpu().numpy()
def from_numpy(self, x):
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
def main_video():
import cv2
import shutil
from tqdm import tqdm
output_folder = 'output_folder'
w = 'checkpoints/best.engine'
predictor = TensorRtPredictor(w)
video_path = 'video_test/car_video.mp4'
out_video_path = os.path.join(output_folder, os.path.basename(video_path))
cap = cv2.VideoCapture(video_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = int(cap.get(cv2.CAP_PROP_FPS))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(out_video_path, fourcc, fps, (width, height))
pbar = tqdm(total=int(cap.get(cv2.CAP_PROP_FRAME_COUNT)))
while cap.isOpened():
ret, frame = cap.read()
if ret:
# new_frame = cv2.resize(frame, (640, 640))
pred = predictor(frame)
if len(pred) > 0:
for p in pred:
x1, y1, x2, y2, conf, cls = p
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.putText(frame, f'{conf:.2f}', (int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
out.write(frame)
pbar.update(1)
else:
break
cap.release()
out.release()
def main_paths():
import cv2
import shutil
from tqdm import tqdm
output_folder = 'output_folder'
w = 'checkpoints/best.engine'
predictor = TensorRtPredictor(w)
img_pths = glob('/home/tanpv/fiftyone/coco-2017/validation/images/*')
for img_pth in tqdm(img_pths):
img = cv2.imread(img_pth)
img_copy = img.copy()
pred = predictor(img)
print(pred)
if len(pred) > 0:
x1, y1, x2, y2, conf, cls = pred[0]
cv2.rectangle(img_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.imwrite(os.path.join(output_folder, os.path.basename(img_pth)), img_copy)
# break
if __name__ == '__main__':
main_paths()