forked from m-hoff/simantha
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtests.py
167 lines (135 loc) · 6.04 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import unittest
import numpy as np
from scipy import stats
import maintsim
class ProductionTest(unittest.TestCase):
'''
Test expected production volume according to Little's Law.
'''
def test_production1(self):
'''
Deterministic production volume of one machine.
'''
time_horizon = 500
cycle_time = 5
expected_production = time_horizon / cycle_time
system = maintsim.System(process_times=[cycle_time])
system.simulate(sim_time=time_horizon, verbose=False)
self.assertEqual(system.machines[-1].parts_made,
expected_production,
'Should be {}'.format(expected_production))
def test_production2(self):
'''
Deterministic production volume of one machine.
'''
time_horizon = 500
cycle_time = 10
expected_production = time_horizon / cycle_time
system = maintsim.System(process_times=[cycle_time])
system.simulate(sim_time=time_horizon, verbose=False)
self.assertEqual(system.machines[-1].parts_made,
expected_production,
'Should be {}'.format(expected_production))
def test_production3(self):
'''
Deterministic production volume of a two-machine line.
'''
time_horizon = 500
cycle_times = [5, 3]
expected_production = time_horizon / max(cycle_times)
system = maintsim.System(process_times=cycle_times)
system.simulate(warmup_time=100, sim_time=time_horizon, verbose=False)
self.assertAlmostEqual(system.machines[-1].parts_made,
expected_production,
msg=f'Should be {expected_production}+/-1',
delta=1)
def test_production4(self):
'''
Test (stochasitc) average throughput with degradation.
'''
repair_lower = 5
repair_upper = 15
system = maintsim.System(process_times=[5],
failure_mode='degradation',
failure_params={'failed state': 10,
'degradation rate': 0.2},
repair_params={'CM': stats.randint(repair_lower,repair_upper+1)})
time_horizon = 500
# calculate true expected ttf (expected time to absorption)
def expected_ttf(Q):
M = Q[:-1, :-1]
I = np.identity(len(M))
N = np.linalg.inv(I - M)
ones = np.ones(shape=(len(M), 1))
t = np.matmul(N, ones)
return t
E_ttf = expected_ttf(system.machines[0].degradation)[0][0]
# expected ttr
E_ttr = (repair_lower + repair_upper) / 2
A = E_ttf / (E_ttf + E_ttr)
E_production = A * (time_horizon / system.machines[0].process_time)
reps = 30
production_samples = []
for _ in range(reps):
system.simulate(sim_time=time_horizon, verbose=False)
production_samples.append(system.machines[0].parts_made)
# conduct one sample t-test
# H_0: average production sample = expected production
# H_1: average production sample != expected production
_, p_value = stats.ttest_1samp(production_samples, E_production)
message = (f'Mean production is {np.mean(production_samples)}' +
f' from {len(production_samples)} samples.' +
f' Expected mean: {E_production}')
self.assertGreaterEqual(p_value, 0.10, msg=message)
def test_degradation1(self):
'''
Test average time to failure of a single machine.
'''
system = maintsim.System(process_times=[5],
failure_mode='degradation',
failure_params={'failed state': 10,
'degradation rate': 0.2},
repair_params={'CM': stats.randint(2,3)})
reps = 1
warmup_time = 100
time_horizon = 5000
ttf_samples = np.array([])
for _ in range(reps):
system.simulate(warmup_time=warmup_time, sim_time=time_horizon, verbose=False)
# gather ttf samples from simulation
ttfs = system.maintenance_data[system.maintenance_data['activity'] == 'failure']['duration'].values
ttfs = ttfs[ttfs != 'NA']
ttf_samples = np.append(ttf_samples, ttfs)
# calculate true expected ttf (expected time to absorption)
def expected_ttf(Q):
M = Q[:-1, :-1]
I = np.identity(len(M))
N = np.linalg.inv(I - M)
ones = np.ones(shape=(len(M), 1))
t = np.matmul(N, ones)
return t
E_ttf = expected_ttf(system.machines[0].degradation)[0][0]
# conduct one sample t-test
# H_0: average ttf sample = expected ttf
# H_1: average ttf sample != expected ttf
_, p_value = stats.ttest_1samp(ttf_samples, E_ttf)
message = f'Mean TTF is {np.mean(ttf_samples)} from {len(ttf_samples)} samples'
self.assertGreaterEqual(p_value, 0.10, msg=message)
def test_ppl1(self):
'''
Test permanent production loss (PPL) measurement of one machine.
'''
system = maintsim.System(process_times=[5],
failure_mode='degradation',
failure_params={'failed state': 10,
'degradation rate': 0.2},
repair_params={'CM': stats.randint(2,3)})
system.simulate(sim_time=1000, verbose=False)
repairs = system.maintenance_data[system.maintenance_data['activity'] == 'repair']
total_repair_time = sum(repairs['duration'])
self.assertEqual(total_repair_time,
system.machines[0].total_downtime,
f'Should be {total_repair_time}')
if __name__ == '__main__':
unittest.main()