-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment.py
433 lines (368 loc) · 20.5 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
################################################################################
# CSE 253: Programming Assignment 4
# Code snippet by Ajit Kumar, Savyasachi
# Fall 2020
################################################################################
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from datetime import datetime
import os
import time
import torchvision
from PIL import Image
import nltk
from caption_utils import *
from constants import ROOT_STATS_DIR, ROOT_CONFIGS_DIR
from dataset_factory import get_datasets
from file_utils import *
from model_factory import get_model
# Class to encapsulate a neural experiment.
# The boilerplate code to setup the experiment, log stats, checkpoints and plotting have been provided to you.
# You only need to implement the main training logic of your experiment and implement train, val and test methods.
# You are free to modify or restructure the code as per your convenience.
class Experiment(object):
def __init__(self, name):
config_data = read_file_in_dir('./', ROOT_CONFIGS_DIR + '/' + name + '.json')
if config_data is None:
raise Exception("Configuration file doesn't exist: ", ROOT_CONFIGS_DIR + '/' + name)
self.__name = config_data['experiment_name']
self.__experiment_dir = os.path.join(ROOT_STATS_DIR, self.__name)
# Load Datasets
self.__coco_test, self.__vocab, self.__train_loader, self.__val_loader, self.__test_loader = get_datasets(
config_data)
# Setup Experiment
self.__img_root_dir = config_data['dataset']['images_root_dir']
self.__generation_config = config_data['generation']
self.__epochs = config_data['experiment']['num_epochs']
self.__lr = config_data['experiment']['learning_rate']
self.__batch_size = config_data['dataset']['batch_size']
self.__num_gpu = config_data['num_gpu']
self.__vocab_size = len(self.__vocab)
self.__current_epoch = 0
self.__training_losses = []
self.__val_losses = []
self.__best_loss = 1000000000000.
self.__best_model = None # Save your best model in this field and use this in test method.
# Init Model
self.__encoder = get_model(config_data, self.__vocab, network_block='encoder')
if config_data['model']['model_type'] == 'LSTM':
self.__decoder = get_model(config_data, self.__vocab, network_block='decoder')
elif config_data['model']['model_type'] == 'stackedLSTM':
self.__decoder = get_model(config_data, self.__vocab, network_block='stacked_decoder')
elif config_data['model']['model_type'] == 'RNN':
self.__decoder = get_model(config_data, self.__vocab, network_block='RNNdecoder')
elif config_data['model']['model_type'] == 'stackedRNN':
self.__decoder = get_model(config_data, self.__vocab, network_block='stacked_RNNdecoder')
else:
assert(0 == 1), 'must select valid model_type'
# TODO: Set these Criterion and Optimizers Correctly
self.__criterion = nn.CrossEntropyLoss()
self.__optimizer = torch.optim.Adam(filter(
lambda p: p.requires_grad, nn.ModuleList([self.__encoder, self.__decoder]
).parameters()), lr=self.__lr)
# If you use SparseAdam, change nn.Embedding in model_factory to sparse=True
self.__init_model()
# Load Experiment Data if available
self.__load_experiment()
# Loads the experiment data if exists to resume training from last saved checkpoint.
def __load_experiment(self):
os.makedirs(ROOT_STATS_DIR, exist_ok=True)
if os.path.exists(self.__experiment_dir):
self.__training_losses = read_file_in_dir(self.__experiment_dir, 'training_losses.txt')
self.__val_losses = read_file_in_dir(self.__experiment_dir, 'val_losses.txt')
self.__best_loss = read_file_in_dir(self.__experiment_dir, 'best_loss.txt')
self.__current_epoch = len(self.__training_losses)
state_dict = torch.load(os.path.join(self.__experiment_dir, 'latest_model.pt'))
self.__encoder.load_state_dict(state_dict['encoder'])
self.__decoder.load_state_dict(state_dict['decoder'])
self.__optimizer.load_state_dict(state_dict['optimizer'])
else:
os.makedirs(self.__experiment_dir, exist_ok=True)
def __load_bleu(self):
if os.path.exists(self.__experiment_dir + 'bleu1_scores.txt'):
self.__bleu1 = read_file_in_dir(self.__experiment_dir, 'bleu1_scores.txt')
self.__bleu4 = read_file_in_dir(self.__experiment_dir, 'bleu4_scores.txt')
def __load_model(self, use_best=False):
if os.path.exists(self.__experiment_dir):
if use_best:
state_dict = torch.load(os.path.join(self.__experiment_dir, 'best_model.pt'))
self.__encoder.load_state_dict(state_dict['encoder'])
self.__decoder.load_state_dict(state_dict['decoder'])
self.__optimizer.load_state_dict(state_dict['optimizer'])
else:
state_dict = torch.load(os.path.join(self.__experiment_dir, 'latest_model.pt'))
self.__encoder.load_state_dict(state_dict['encoder'])
self.__decoder.load_state_dict(state_dict['decoder'])
self.__optimizer.load_state_dict(state_dict['optimizer'])
else:
assert(0 == 1), 'model path doesn\'t exist'
def __init_model(self):
if torch.cuda.is_available():
# self.__model = self.__model.cuda().float()
self.__encoder = nn.DataParallel(self.__encoder, device_ids=range(self.__num_gpu)).float().cuda()
self.__decoder = nn.DataParallel(self.__decoder, device_ids=range(self.__num_gpu)).float().cuda()
self.__criterion = self.__criterion.cuda()
# Main method to run your experiment. Should be self-explanatory.
def run(self, get_bleu=False):
if get_bleu:
self.__bleu1 = []
self.__bleu4 = []
self.__load_bleu()
start_epoch = self.__current_epoch
for epoch in range(start_epoch, self.__epochs): # loop over the dataset multiple times
start_time = datetime.now()
self.__current_epoch = epoch
train_loss = self.__train()
print('\nFinished Training Epoch {}'.format(epoch+1))
val_loss = self.__val()
print('\nFinished Validation Epoch {}'.format(epoch+1))
is_best = self.__record_stats(train_loss, val_loss)
self.__log_epoch_stats(start_time)
self.__save_model()
if is_best:
self.__save_best_model()
if get_bleu:
b1, b4 = self.__bleu_test()
self.__record_bleu(b1, b4)
# TODO: Perform one training iteration on the whole dataset and return loss value
def __train(self):
# train_loader returns (imgs, labels, img_ids), imgs is just
#images (batch_size, 3, 256, 256), labels is (batch_size, max_sentence_length_for_this_batch)
# labels consists of integers that map to a unique word in vocabulary
#1 is start, 2 is end, 0 is padding
self.__encoder.train()
self.__decoder.train()
train_cost = torch.zeros(1).cuda()
for i, (images, captions, _) in enumerate(self.__train_loader):
X = images.cuda()
Y_target = captions[:, 1:].cuda()
Y_train = captions[:, :captions.size(1) - 1].cuda()
img_embedded = self.__encoder(X)
out_captions = self.__decoder(img_embedded, Y_train)
loss = self.__criterion(out_captions.view(-1, self.__vocab_size), Y_target.contiguous().view(-1))
train_cost += loss.detach()
self.__optimizer.zero_grad()
loss.backward()
self.__optimizer.step()
# raise NotImplementedError()
return (train_cost.item()) / len(self.__train_loader)
# TODO: Perform one Pass on the validation set and return loss value. You may also update your best model here.
def __val(self):
self.__encoder.eval()
self.__decoder.eval()
val_cost = torch.zeros(1).cuda()
with torch.no_grad():
for i, (images, captions, _) in enumerate(self.__val_loader):
X = images.cuda()
Y_target = captions[:, 1:].cuda()
Y_train = captions[:, :captions.size(1) - 1].cuda()
img_embedded = self.__encoder(X)
out_captions = self.__decoder(img_embedded, Y_train)
loss = self.__criterion(out_captions.view(-1, self.__vocab_size), Y_target.contiguous().view(-1))
val_cost += loss.detach()
# raise NotImplementedError()
return (val_cost.item()) / len(self.__val_loader)
# TODO: Implement your test function here. Generate sample captions and evaluate loss and
# bleu scores using the best model. Use utility functions provided to you in caption_utils.
# Note than you'll need image_ids and COCO object in this case to fetch all captions to generate bleu scores.
def test(self, use_best=False, temp=None):
if use_best:
self.__load_model(use_best=True)
else:
self.__load_model()
self.__encoder.eval()
self.__decoder.eval()
test_cost = torch.zeros(1).cuda()
bleu1_score = 0
bleu4_score = 0
if temp is None:
temperature = self.__generation_config['temperature']
else:
temperature = temp
gen_max_length = self.__generation_config['max_length']
# total_iter = len(self.__test_loader)
with torch.no_grad():
for iter, (images, captions, img_ids) in enumerate(self.__test_loader):
# print('Iteration {} of {}'.format(iter, total_iter))
#img_ids is a list of integers
X = images.cuda()
Y_target = captions[:, 1:].cuda()
Y_train = captions[:, :captions.size(1) - 1].cuda()
img_embedded = self.__encoder(X)
out_captions = self.__decoder(img_embedded, Y_train)
loss = self.__criterion(out_captions.view(-1, self.__vocab_size), Y_target.contiguous().view(-1))
test_cost += loss.detach()
gen_captions = self.__decoder(img_embedded, Y_train, gen=True, temperature=temperature, max_length=gen_max_length).type(torch.int).cpu()
# end_idx = [torch.where(gen_captions[n, :] == 2)[1] for n in range(gen_captions.size(0))]
list_captions = [gen_captions[n, :] for n in range(gen_captions.size(0))]
for n, gen_cap in enumerate(list_captions):
if 2 in gen_cap:
gen_cap = gen_cap[0:torch.where(gen_cap == 2)[0][0].item()]
if 1 in gen_cap:
gen_cap = gen_cap[torch.where(gen_cap == 1)[0][0].item()+1:]
caption_dict = self.__coco_test.imgToAnns[img_ids[n]]
# real_captions = [entry['caption'].lower().split() for entry in caption_dict]
real_captions = [nltk.tokenize.word_tokenize(entry['caption'].lower()) for entry in caption_dict]
parsed_gen_caption = [self.__vocab.idx2word[index.item()] for index in gen_cap]
bleu1_score += bleu1(real_captions, parsed_gen_caption)
bleu4_score += bleu4(real_captions, parsed_gen_caption)
if use_best:
result_str = "Test Performance (Best Model): Loss: {}, Bleu1: {}, Bleu4: {}, Temp: {}"\
.format((test_cost.item() / len(self.__test_loader)),
bleu1_score / (len(self.__test_loader) * self.__batch_size),
bleu4_score / (len(self.__test_loader) * self.__batch_size),
temperature)
else:
result_str = "Test Performance (Latest Model): Loss: {}, Bleu1: {}, Bleu4: {}, Temp {}"\
.format((test_cost.item() / len(self.__test_loader)),
bleu1_score / (len(self.__test_loader) * self.__batch_size),
bleu4_score / (len(self.__test_loader) * self.__batch_size),
temperature)
self.__log(result_str)
return (test_cost.item() / len(self.__test_loader)),\
bleu1_score / (len(self.__test_loader) * self.__batch_size),\
bleu4_score / (len(self.__test_loader) * self.__batch_size)
def __bleu_test(self, temp=None):
self.__encoder.eval()
self.__decoder.eval()
bleu1_score = 0
bleu4_score = 0
if temp is None:
temperature = self.__generation_config['temperature']
else:
temperature = temp
gen_max_length = self.__generation_config['max_length']
# total_iter = len(self.__test_loader)
with torch.no_grad():
for iter, (images, captions, img_ids) in enumerate(self.__test_loader):
# print('Iteration {} of {}'.format(iter, total_iter))
#img_ids is a list of integers
X = images.cuda()
Y_train = captions[:, :captions.size(1) - 1].cuda()
img_embedded = self.__encoder(X)
gen_captions = self.__decoder(img_embedded, Y_train, gen=True, temperature=temperature, max_length=gen_max_length).type(torch.int).cpu()
# end_idx = [torch.where(gen_captions[n, :] == 2)[1] for n in range(gen_captions.size(0))]
list_captions = [gen_captions[n, :] for n in range(gen_captions.size(0))]
# print(list_captions[0])
# print(list_captions[1])
# print(list_captions[2])
for n, gen_cap in enumerate(list_captions):
if 2 in gen_cap:
gen_cap = gen_cap[0:torch.where(gen_cap == 2)[0][0].item()]
if 1 in gen_cap:
gen_cap = gen_cap[torch.where(gen_cap == 1)[0][0].item()+1:]
caption_dict = self.__coco_test.imgToAnns[img_ids[n]]
# real_captions = [entry['caption'].lower().split() for entry in caption_dict]
real_captions = [nltk.tokenize.word_tokenize(entry['caption'].lower()) for entry in caption_dict]
parsed_gen_caption = [self.__vocab.idx2word[index.item()] for index in gen_cap]
bleu1_score += bleu1(real_captions, parsed_gen_caption)
bleu4_score += bleu4(real_captions, parsed_gen_caption)
result_str = "Test BLEU scores (Latest Model): Bleu1: {}, Bleu4: {}, Temp {}"\
.format(bleu1_score / 15000.,
bleu4_score / 15000.,
temperature)
self.__log(result_str)
return bleu1_score / 15000.,\
bleu4_score / 15000.
def gen_caption(self, temp=None, img_path=None, out_dir='./outputs'):
self.__load_model(use_best=True)
self.__encoder.eval()
self.__decoder.eval()
os.makedirs(out_dir, exist_ok=True)
if temp is None:
temperature = self.__generation_config['temperature']
else:
temperature = temp
gen_max_length = self.__generation_config['max_length']
if img_path is not None:
assert(os.path.exists(img_path)), 'img_path does not exists'
normalize_img = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
resize_img = torchvision.transforms.Compose(
[torchvision.transforms.Resize(256, interpolation=2), torchvision.transforms.CenterCrop(256)])
image = Image.open(img_path).convert('RGB')
image = resize_img(image)
image = normalize_img(np.asarray(image))
else:
root_test = os.path.join(self.__img_root_dir, 'test')
with torch.no_grad():
images, captions, img_ids = next(iter(self.__test_loader))
X = images.cuda()
Y_train = captions[:, :captions.size(1) - 1].cuda()
img_embedded = self.__encoder(X)
gen_captions = self.__decoder(img_embedded, Y_train, gen=True, temperature=temperature, max_length=gen_max_length).type(torch.int).cpu()
list_captions = [gen_captions[n, :] for n in range(gen_captions.size(0))]
for n, gen_cap in enumerate(list_captions):
if 2 in gen_cap:
gen_cap = gen_cap[0:torch.where(gen_cap == 2)[0][0].item()]
if 1 in gen_cap:
gen_cap = gen_cap[torch.where(gen_cap == 1)[0][0].item()+1:]
caption_dict = self.__coco_test.imgToAnns[img_ids[n]]
real_captions = [entry['caption'].lower() for entry in caption_dict]
parsed_gen_caption = ' '.join([self.__vocab.idx2word[index.item()] for index in gen_cap])
path = self.__coco_test.loadImgs(img_ids[n])[0]['file_name']
image = Image.open(os.path.join(root_test, path))
image.save(out_dir + '/captioned_{}_image.png'.format(n))
with open(out_dir + '/captioned_{}_real.txt'.format(n), "w") as out_file:
for line in real_captions:
out_file.write(line)
with open(out_dir + '/captioned_{}_gen.txt'.format(n), "w") as out_file:
out_file.write(parsed_gen_caption)
def __save_model(self):
root_model_path = os.path.join(self.__experiment_dir, 'latest_model.pt')
encoder_dict = self.__encoder.state_dict()
decoder_dict = self.__decoder.state_dict()
state_dict = {'encoder': encoder_dict, 'decoder': decoder_dict, 'optimizer': self.__optimizer.state_dict()}
torch.save(state_dict, root_model_path)
def __save_best_model(self):
root_model_path = os.path.join(self.__experiment_dir, 'best_model.pt')
encoder_dict = self.__encoder.state_dict()
decoder_dict = self.__decoder.state_dict()
state_dict = {'encoder': encoder_dict, 'decoder': decoder_dict, 'optimizer': self.__optimizer.state_dict()}
torch.save(state_dict, root_model_path)
def __record_stats(self, train_loss, val_loss):
best_flag = False
if val_loss < self.__best_loss:
self.__best_loss = val_loss
write_to_file_in_dir(self.__experiment_dir, 'best_loss.txt', self.__best_loss)
best_flag = True
self.__training_losses.append(train_loss)
self.__val_losses.append(val_loss)
# self.plot_stats()
write_to_file_in_dir(self.__experiment_dir, 'training_losses.txt', self.__training_losses)
write_to_file_in_dir(self.__experiment_dir, 'val_losses.txt', self.__val_losses)
return best_flag
def __record_bleu(self, bleu1_score, bleu4_score):
self.__bleu1.append(bleu1_score)
self.__bleu4.append(bleu4_score)
write_to_file_in_dir(self.__experiment_dir, 'bleu1_scores.txt', self.__bleu1)
write_to_file_in_dir(self.__experiment_dir, 'bleu4_scores.txt', self.__bleu4)
def __log(self, log_str, file_name=None):
print(log_str)
log_to_file_in_dir(self.__experiment_dir, 'all.log', log_str)
if file_name is not None:
log_to_file_in_dir(self.__experiment_dir, file_name, log_str)
def __log_epoch_stats(self, start_time):
time_elapsed = datetime.now() - start_time
time_to_completion = time_elapsed * (self.__epochs - self.__current_epoch - 1)
train_loss = self.__training_losses[self.__current_epoch]
val_loss = self.__val_losses[self.__current_epoch]
summary_str = "Epoch: {}, Train Loss: {}, Val Loss: {}, Took {}, ETA: {}\n"
summary_str = summary_str.format(self.__current_epoch + 1, train_loss, val_loss, str(time_elapsed),
str(time_to_completion))
self.__log(summary_str, 'epoch.log')
def plot_stats(self):
e = len(self.__training_losses)
x_axis = np.arange(1, e + 1, 1)
plt.figure()
plt.plot(x_axis, self.__training_losses, label="Training Loss")
plt.plot(x_axis, self.__val_losses, label="Validation Loss")
plt.xlabel("Epochs")
plt.legend(loc='best')
plt.title(self.__name + " Stats Plot")
plt.savefig(os.path.join(self.__experiment_dir, "stat_plot.png"))
plt.show()