-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathautoencoder.h
109 lines (78 loc) · 2.41 KB
/
autoencoder.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
* autoencoder.h
*
* Created on: 2016/01/18
* Author: takeshi.fujita
*/
#ifndef AUTOENCODER_H_
#define AUTOENCODER_H_
#include "variable.h"
#include "function.h"
#include "model.h"
#include "optimizer_adam.h"
#include "optimizer_sgd_moment.h"
class AutoEncoder {
public:
Function *linear1;
Function *linear2;
PVariable z1;
PVariable z2;
Variable *w2, *b2;
Function *f_relu1;
Function *f_drop1;
Function *f_mean_squared_error;
Model model;
//OptimizerAdam *optimizer;
Optimizer *optimizer;
PVariable nx;
PVariable drx;
AutoEncoder(FunctionLinear *linear1,
const float dropout_p, Optimizer *optimizer) {
this->linear1 = linear1;
linear1->w.randoms(0, 1.0 / sqrt(((float) linear1->w.data.cols)));
linear1->b.zeros();
w2 = new Variable(linear1->w.data.cols, linear1->w.data.rows);
b2 = new Variable(linear1->w.data.cols, 1);
w2->randoms(0, 1.0 / sqrt(((float) linear1->w.data.rows)));
linear2 = new FunctionLinear(*w2, *b2);
f_relu1 = new FunctionReLU();
f_drop1 = new FunctionDropout(dropout_p);
f_mean_squared_error = new FunctionMeanSquaredError();
optimizer->model->putF("l1", linear1);
optimizer->model->putF("l2", linear2);
optimizer->init();
this->optimizer = optimizer;
}
~AutoEncoder() {
delete linear2;
delete f_relu1;
delete f_drop1;
delete f_mean_squared_error;
//delete optimizer;
//delete nx;
//delete drx;
delete w2;
delete b2;
}
float train(PVariable x) {
if (nx == NULL) {
nx = PVariable(new Variable(x->data.rows, x->data.cols));
drx = PVariable(new Variable(x->data.rows, x->data.cols));
drx->randoms(0, 0.01);
}
//denoising auto-encoder
x->data.plus(drx->data, nx->data);
//nx->data = x->data;
z1 = f_drop1->forward(f_relu1->forward(linear1->forward(nx)));
z2 = linear2->forward(z1);
PVariable loss = f_mean_squared_error->forward(z2, x);
loss->backward();
float loss_val = loss->data(0, 0);
//cout << " loss:" << loss_val << endl;
// update -------------------------------------------
optimizer->update();
loss->zero_grads();
return loss_val;
}
};
#endif /* AUTOENCODER_H_ */