-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·251 lines (206 loc) · 8.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
from torchsummary import summary
from time import time
import traceback
import os
import argparse
from models import ResNet, BasicBlock
# calculate block count per residual layer
def block_count(depth: int) -> int:
assert (depth - 4) % 6 == 0
return (depth - 4) // 6
def get_num_blocks(depth: int) -> list:
return [block_count(depth), block_count(depth), block_count(depth)]
def make_model(k = 2, d = 82):
# instantiate model
model = ResNet(BasicBlock, get_num_blocks(d), k = k)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
print('cuda')
if torch.cuda.device_count() > 1:
print('cuda: {}'.format(torch.cuda.device_count()))
model = nn.DataParallel(model)
model.to(device)
# load best model (lowest validation loss)
#try:
# model.load_state_dict(torch.load('./top_models/tpsnet.pt'))
# print('Model weights loaded')
#except:
# traceback.print_exc()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Deep Learning Project-1")
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from latest checkpoint')
parser.add_argument('--epochs', '-e', type=int, default=300, help='no. of epochs')
parser.add_argument('-w','--num_workers',type=int,default=12,help='number of workers')
parser.add_argument('-b','--batch_size',type=int,default=128,help='batch_size')
args = parser.parse_args()
# hyperparams
num_workers = args.num_workers
batch_size = args.batch_size
n_epochs = args.epochs
# define transform
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding = 4),
transforms.RandomRotation(5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])
# get training and test sets
train_data = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform_train)
test_data = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform_test)
# define classes
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# define data loaders
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size = batch_size,
shuffle = True,
num_workers = num_workers
)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size = batch_size,
shuffle = False,
num_workers = num_workers
)
model = make_model()
summary(model, (3, 32, 32))
# define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9, weight_decay = 5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = n_epochs)
# define training loop
test_loss_min = np.Inf
train_loss_list = list()
test_loss_list = list()
train_acc_list = list()
test_acc_list = list()
start = time()
for epoch in range(1, n_epochs + 1):
train_loss = 0
test_loss = 0
total_correct_train = 0
total_correct_test = 0
total_train = 0
total_test = 0
# train model
model.train()
for data, target in train_loader:
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item() * data.size(0)
# calculate accuracies
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy()) if not torch.cuda.is_available() else np.squeeze(correct_tensor.cpu().numpy())
total_correct_train += np.sum(correct)
total_train += correct.shape[0]
# validate model
model.eval()
for data, target in test_loader:
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
with torch.no_grad():
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
# calculate accuracies
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy()) if not torch.cuda.is_available() else np.squeeze(correct_tensor.cpu().numpy())
total_correct_test += np.sum(correct)
total_test += correct.shape[0]
# update scheduler
scheduler.step()
# compute average loss
train_loss /= total_train
test_loss /= total_test
# compute accuracies
train_acc = total_correct_train / total_train * 100
test_acc = total_correct_test / total_test * 100
# save data
train_loss_list.append(train_loss)
test_loss_list.append(test_loss)
train_acc_list.append(train_acc)
test_acc_list.append(test_acc)
# display stats
print('Epoch: {}/{} \tTrain Loss: {:.6f} \tTest Loss: {:.6f} \tTrain Acc: {:.2f}% \tTest Acc: {:.2f}%'.format(epoch, n_epochs, train_loss, test_loss, train_acc, test_acc))
# save best model
if test_loss <= test_loss_min:
print('Test loss decreased ({:.6f} --> {:.6f}. Saving model...'.format(test_loss_min, test_loss))
if not os.path.isdir('best_model'):
os.mkdir('best_model')
torch.save(model.state_dict(), './best_model/tpsnet.pt')
test_loss_min = test_loss
end = time()
print('Time elapsed: {} hours'.format((end - start) / 3600.0))
model = make_model()
# test model
test_loss = 0
total_correct = 0
total = 0
model.eval()
for data, target in test_loader:
if torch.cuda.is_available():
data, target = data.cuda(), target.cuda()
with torch.no_grad():
output = model(data)
loss = criterion(output, target)
test_loss += loss.item() * data.size(0)
# calculate accuracies
_, pred = torch.max(output, 1)
correct_tensor = pred.eq(target.data.view_as(pred))
correct = np.squeeze(correct_tensor.numpy()) if not torch.cuda.is_available() else np.squeeze(correct_tensor.cpu().numpy())
total_correct += np.sum(correct)
total += correct.shape[0]
# calculate overall accuracy
print('Model accuracy on test dataset: {:.2f}%'.format(total_correct / total * 100))
if not os.path.isdir('results'):
os.mkdir('results')
# plot and save figures
plt.figure()
plt.plot(np.arange(n_epochs), train_loss_list)
plt.plot(np.arange(n_epochs), test_loss_list)
plt.title('Learning Curve: Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(['Train Loss', 'Test Loss'])
plt.savefig('./results/train_test_loss.png')
plt.close()
plt.figure()
plt.plot(np.arange(n_epochs), train_acc_list)
plt.plot(np.arange(n_epochs), test_acc_list)
plt.title('Learning Curve: Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(['Train Accuracy', 'Test Accuracy'])
plt.savefig('./results/train_test_acc.png')
plt.close()
# write training data to csv file
with open('./results/train_data.csv', 'w') as f:
f.write('train_loss, test_loss, train_acc, test_acc\n')
for i in range(n_epochs):
f.write('{}, {}, {}, {}\n'.format(train_loss_list[i], test_loss_list[i], train_acc_list[i], test_acc_list[i]))