Skip to content

Commit a376511

Browse files
author
philipp-baumann
committed
Link first tutorial
1 parent babf64e commit a376511

File tree

2 files changed

+77
-148
lines changed

2 files changed

+77
-148
lines changed

README.Rmd

395 Bytes
Binary file not shown.

README.md

+77-148
Original file line numberDiff line numberDiff line change
@@ -1,151 +1,80 @@
11
`simplerspec` teaching material for infrared spectroscopy applications
22
================
33

4-
# Getting started with infrared spectroscopy
5-
6-
First, you should read some scientific literature. You are probably
7-
curious what infrared spectroscopy is based on and what it serves to in
8-
an agronomic context. You will find out by reading the recommended
9-
literature at the bottom of this document.
10-
11-
-----
12-
13-
Secondly, you may want to be prepared to measure, process and model
14-
plant or soil samples spectrally, and finally predict properties of new
15-
samples to reduce the extent of labourious reference analyses. To achive
16-
this, one needs some statistics.
17-
18-
R has become a very popular environment for statistical computing. There
19-
are alternative languages that are equally good, better or worse,
20-
depending on the field of application and personal opinion. Here, we
21-
solely focus on R.
22-
23-
- **Minimum recommended R knowledge**: Prior to working with spectral
24-
data using the R environment, you should improve your R
25-
scripting/programming skills. You can for example consider [**this
26-
document**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.md)
27-
in this repo or [**this pdf
28-
file**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.pdf).
29-
I would highly recommend to do this because being familiar with R
30-
basics helps to avoid frustration in the first place and to
31-
hopefully enjoy the opportunities spectral analysis provides.
32-
33-
-----
34-
35-
# Recommended literature
36-
37-
## Principles and applications of soil spectroscopy
38-
39-
- Awiti, A. O., Walsh, M. G., Shepherd, K. D., & Kinyamario, J.
40-
(2008). Soil condition classification using infrared spectroscopy: A
41-
proposition for assessment of soil condition along a tropical
42-
forest-cropland chronosequence. Geoderma, 143(1–2), 73–84.
43-
<https://doi.org/10.1016/j.geoderma.2007.08.021>
44-
45-
- Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R.
46-
(2001). Near-infrared reflectance spectroscopy–principal components
47-
regression analyses of soil properties. Soil Science Society of
48-
America Journal, 65(2), 480–490.
49-
50-
- Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby, N. P.
51-
A., Bernoux, M., & Barthès, B. G. (2016). National calibration of
52-
soil organic carbon concentration using diffuse infrared reflectance
53-
spectroscopy. Geoderma, 276, 41–52.
54-
<https://doi.org/10.1016/j.geoderma.2016.04.021>
55-
56-
- Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann,
57-
M., Barthès, B., … Wetterlind, J. (2015). Chapter Four - Soil
58-
Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring.
59-
In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 132, pp. 139–159).
60-
Academic Press. Retrieved from
61-
<http://www.sciencedirect.com/science/article/pii/S0065211315000425>
62-
63-
- Rinnan, Å. (2014). Pre-processing in vibrational spectroscopy –
64-
when, why and how. Analytical Methods, 6(18), 7124.
65-
<https://doi.org/10.1039/C3AY42270D>
66-
67-
- Rinnan, Å., Berg, F. van den, & Engelsen, S. B. (2009). Review of
68-
the most common pre-processing techniques for near-infrared spectra.
69-
TrAC Trends in Analytical Chemistry, 28(10), 1201–1222.
70-
<https://doi.org/10.1016/j.trac.2009.07.007>
71-
72-
- Shepherd, K. D., & Markus G. Walsh. (n.d.). Infrared
73-
spectroscopy—enabling an evidence-based diagnostic surveillance
74-
approach to agricultural and environmental management in developing
75-
countries. <https://doi.org/10.1255/jnirs.716>
76-
77-
- Sila, A. M., Shepherd, K. D., & Pokhariyal, G. P. (2016). Evaluating
78-
the utility of mid-infrared spectral subspaces for predicting soil
79-
properties. Chemometrics and Intelligent Laboratory Systems, 153,
80-
92–105. <https://doi.org/10.1016/j.chemolab.2016.02.013>
81-
82-
- Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., & Shepherd,
83-
K. D. (2010). Prediction of Soil Fertility Properties from a
84-
Globally Distributed Soil Mid-Infrared Spectral Library. Soil
85-
Science Society of America Journal, 74(5), 1792.
86-
<https://doi.org/10.2136/sssaj2009.0218>
87-
88-
- Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J.,
89-
Demattê, J. A. M., Shepherd, K. D., … Ji, W. (2016). A global
90-
spectral library to characterize the world’s soil. Earth-Science
91-
Reviews, 155, 198–230.
92-
<https://doi.org/10.1016/j.earscirev.2016.01.012>
93-
94-
- Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik,
95-
L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid
96-
infrared or combined diffuse reflectance spectroscopy for
97-
simultaneous assessment of various soil properties. Geoderma,
98-
131(1–2), 59–75. <https://doi.org/10.1016/j.geoderma.2005.03.007>
99-
100-
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a
101-
basic tool of chemometrics. Chemometrics and Intelligent Laboratory
102-
Systems, 58(2), 109–130.
103-
<https://doi.org/10.1016/S0169-7439(01)00155-1>
104-
105-
## Principles and application of plant infrared spectroscopy
106-
107-
- Lebot, V, Malapa, R., & Jung, M. (2013). Use of NIRS for the rapid
108-
prediction of total N, minerals, sugars and starch in tropical root
109-
and tuber crops. New Zealand Journal of Crop and Horticultural
110-
Science, 41(3), 144–153.
111-
<https://doi.org/10.1080/01140671.2013.798335>
112-
113-
- Lebot, Vincent, Champagne, A., Malapa, R., & Shiley, D. (2009). NIR
114-
Determination of Major Constituents in Tropical Root and Tuber Crop
115-
Flours. Journal of Agricultural and Food Chemistry, 57(22),
116-
10539–10547. <https://doi.org/10.1021/jf902675n>
117-
118-
- van Maarschalkerweerd, M., & Husted, S. (2015). Recent developments
119-
in fast spectroscopy for plant mineral analysis. Frontiers in Plant
120-
Science, 6. <https://doi.org/10.3389/fpls.2015.00169>
121-
122-
## Statistical modeling based on spectroscopy
123-
124-
- Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable
125-
selection methods when multicollinearity is present. Chemometrics
126-
and Intelligent Laboratory Systems, 78(1–2), 103–112.
127-
<https://doi.org/10.1016/j.chemolab.2004.12.011>
128-
129-
- Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox
130-
based on projections and latent variables: A chemometrics toolbox
131-
based on projections and latent variables. Journal of Chemometrics,
132-
28(5), 332–346. <https://doi.org/10.1002/cem.2581>
133-
134-
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of
135-
statistical learning (Vol. 1). Springer series in statistics
136-
Springer, Berlin. Retrieved from
137-
<http://statweb.stanford.edu/~tibs/book/preface.ps>
138-
139-
- Kuhn, M. (2008). Building Predictive Models in R Using the caret
140-
Package. Journal of Statistical Software, Articles, 28(5), 1–26.
141-
<https://doi.org/10.18637/jss.v028.i05>
142-
143-
- Stevens, A., & Ramirez–Lopez, L. (2014). An introduction to the
144-
prospectr package. R Package Vignette, Report No.: R Package Version
145-
0.1, 3. Retrieved from
146-
<ftp://200.236.31.2/CRAN/web/packages/prospectr/vignettes/prospectr-intro.pdf>
147-
148-
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a
149-
basic tool of chemometrics. Chemometrics and Intelligent Laboratory
150-
Systems, 58(2), 109–130.
151-
<https://doi.org/10.1016/S0169-7439(01)00155-1>
4+
Getting started with infrared spectroscopy
5+
==========================================
6+
7+
First, you should read some scientific literature. You are probably curious what infrared spectroscopy is based on and what it serves to in an agronomic context. You will find out by reading the recommended literature at the bottom of this document.
8+
9+
------------------------------------------------------------------------
10+
11+
Secondly, you may want to be prepared to measure, process and model plant or soil samples spectrally, and finally predict properties of new samples to reduce the extent of labourious reference analyses. To achive this, one needs some statistics.
12+
13+
R has become a very popular environment for statistical computing. There are alternative languages that are equally good, better or worse, depending on the field of application and personal opinion. Here, we solely focus on R.
14+
15+
- **Minimum recommended R knowledge**: Prior to working with spectral data using the R environment, you should improve your R scripting/programming skills. You can for example consider [**this document**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.md) in this repo or [**this pdf file**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.pdf). I would highly recommend to do this because being familiar with R basics helps to avoid frustration in the first place and to hopefully enjoy the opportunities spectral analysis provides.
16+
17+
------------------------------------------------------------------------
18+
19+
Spectroscopy tutorials
20+
======================
21+
22+
Below you find specific sections that cover the spectroscopy processing and modeling workflow (click on links):
23+
24+
1. [**Read, filter and transform spectra and metadata**](https://github.com/philipp-baumann/simplerspec-read-filter-transform): Learn how to use the R core data structures and opterations such as subsetting to explore and transform spectral data.
25+
26+
------------------------------------------------------------------------
27+
28+
Recommended literature
29+
======================
30+
31+
Principles and applications of soil spectroscopy
32+
------------------------------------------------
33+
34+
- Awiti, A. O., Walsh, M. G., Shepherd, K. D., & Kinyamario, J. (2008). Soil condition classification using infrared spectroscopy: A proposition for assessment of soil condition along a tropical forest-cropland chronosequence. Geoderma, 143(1–2), 73–84. <https://doi.org/10.1016/j.geoderma.2007.08.021>
35+
36+
- Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R. (2001). Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2), 480–490.
37+
38+
- Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby, N. P. A., Bernoux, M., & Barthès, B. G. (2016). National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma, 276, 41–52. <https://doi.org/10.1016/j.geoderma.2016.04.021>
39+
40+
- Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., … Wetterlind, J. (2015). Chapter Four - Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 132, pp. 139–159). Academic Press. Retrieved from <http://www.sciencedirect.com/science/article/pii/S0065211315000425>
41+
42+
- Rinnan, Å. (2014). Pre-processing in vibrational spectroscopy – when, why and how. Analytical Methods, 6(18), 7124. <https://doi.org/10.1039/C3AY42270D>
43+
44+
- Rinnan, Å., Berg, F. van den, & Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10), 1201–1222. <https://doi.org/10.1016/j.trac.2009.07.007>
45+
46+
- Shepherd, K. D., & Markus G. Walsh. (n.d.). Infrared spectroscopy—enabling an evidence-based diagnostic surveillance approach to agricultural and environmental management in developing countries. <https://doi.org/10.1255/jnirs.716>
47+
48+
- Sila, A. M., Shepherd, K. D., & Pokhariyal, G. P. (2016). Evaluating the utility of mid-infrared spectral subspaces for predicting soil properties. Chemometrics and Intelligent Laboratory Systems, 153, 92–105. <https://doi.org/10.1016/j.chemolab.2016.02.013>
49+
50+
- Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., & Shepherd, K. D. (2010). Prediction of Soil Fertility Properties from a Globally Distributed Soil Mid-Infrared Spectral Library. Soil Science Society of America Journal, 74(5), 1792. <https://doi.org/10.2136/sssaj2009.0218>
51+
52+
- Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., … Ji, W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. <https://doi.org/10.1016/j.earscirev.2016.01.012>
53+
54+
- Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. <https://doi.org/10.1016/j.geoderma.2005.03.007>
55+
56+
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. <https://doi.org/10.1016/S0169-7439(01)00155-1>
57+
58+
Principles and application of plant infrared spectroscopy
59+
---------------------------------------------------------
60+
61+
- Lebot, V, Malapa, R., & Jung, M. (2013). Use of NIRS for the rapid prediction of total N, minerals, sugars and starch in tropical root and tuber crops. New Zealand Journal of Crop and Horticultural Science, 41(3), 144–153. <https://doi.org/10.1080/01140671.2013.798335>
62+
63+
- Lebot, Vincent, Champagne, A., Malapa, R., & Shiley, D. (2009). NIR Determination of Major Constituents in Tropical Root and Tuber Crop Flours. Journal of Agricultural and Food Chemistry, 57(22), 10539–10547. <https://doi.org/10.1021/jf902675n>
64+
65+
- van Maarschalkerweerd, M., & Husted, S. (2015). Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 6. <https://doi.org/10.3389/fpls.2015.00169>
66+
67+
Statistical modeling based on spectroscopy
68+
------------------------------------------
69+
70+
- Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112. <https://doi.org/10.1016/j.chemolab.2004.12.011>
71+
72+
- Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox based on projections and latent variables: A chemometrics toolbox based on projections and latent variables. Journal of Chemometrics, 28(5), 332–346. <https://doi.org/10.1002/cem.2581>
73+
74+
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer series in statistics Springer, Berlin. Retrieved from <http://statweb.stanford.edu/~tibs/book/preface.ps>
75+
76+
- Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, Articles, 28(5), 1–26. <https://doi.org/10.18637/jss.v028.i05>
77+
78+
- Stevens, A., & Ramirez–Lopez, L. (2014). An introduction to the prospectr package. R Package Vignette, Report No.: R Package Version 0.1, 3. Retrieved from <ftp://200.236.31.2/CRAN/web/packages/prospectr/vignettes/prospectr-intro.pdf>
79+
80+
- Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. <https://doi.org/10.1016/S0169-7439(01)00155-1>

0 commit comments

Comments
 (0)