forked from philipp-baumann/simplerspec-teaching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
142 lines (103 loc) · 7.3 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
title: "`simplerspec` teaching material for infrared spectroscopy applications"
output: rmarkdown::github_document
---
# Getting started with infrared spectroscopy
First, you should read some scientific literature. You are probably curious what
infrared spectroscopy is based on and what it serves to in an agronomic context.
You will find out by reading the recommended literature at the bottom of this
document.
---
Secondly, you may want to be prepared to measure, process and model plant or
soil samples spectrally, and finally predict properties of new samples to reduce
the extent of labourious reference analyses. To achive this, one needs some
statistics.
R has become a very popular environment for statistical computing.
There are alternative languages that are equally good, better or worse,
depending on the field of application and personal opinion. Here, we solely
focus on R.
* **Minimum recommended R knowledge**: Prior to working with spectral data
using the R environment, you should improve your R scripting/programming
skills. You can for example consider
[**this document**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.md)
in this repo or
[**this pdf file**](https://github.com/philipp-baumann/simplerspec-teaching/blob/master/00_R-basics-spectro.pdf).
I would highly recommend to do this because being familiar
with R basics helps to avoid frustration in the first place and to hopefully
enjoy the opportunities spectral analysis provides.
---
# Spectroscopy tutorials
Below you find specific sections that cover the spectroscopy processing and
modeling workflow (click on links):
1. [**Read, filter and transform spectra and metadata**](https://github.com/philipp-baumann/simplerspec-read-filter-transform):
Learn how to use the R core data structures and opterations such as subsetting
to explore and transform spectral data.
---
# Recommended literature
## Principles and applications of soil spectroscopy
* Awiti, A. O., Walsh, M. G., Shepherd, K. D., & Kinyamario, J.
(2008). Soil condition classification using infrared spectroscopy: A
proposition for assessment of soil condition along a tropical
forest-cropland chronosequence. Geoderma, 143(1–2), 73–84.
<https://doi.org/10.1016/j.geoderma.2007.08.021>
* Chang, C.-W., Laird, D. A., Mausbach, M. J., & Hurburgh, C. R.
(2001). Near-infrared reflectance spectroscopy–principal components
regression analyses of soil properties. Soil Science Society of
America Journal, 65(2), 480–490.
* Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby, N. P.
A., Bernoux, M., & Barthès, B. G. (2016). National calibration of
soil organic carbon concentration using diffuse infrared reflectance
spectroscopy. Geoderma, 276, 41–52.
<https://doi.org/10.1016/j.geoderma.2016.04.021>
* Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann,
M., Barthès, B., … Wetterlind, J. (2015). Chapter Four - Soil
Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring.
In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 132, pp. 139–159).
Academic Press. Retrieved from
<http://www.sciencedirect.com/science/article/pii/S0065211315000425>
* Rinnan, Å. (2014). Pre-processing in vibrational spectroscopy –
when, why and how. Analytical Methods, 6(18), 7124.
<https://doi.org/10.1039/C3AY42270D>
* Rinnan, Å., Berg, F. van den, & Engelsen, S. B. (2009). Review of
the most common pre-processing techniques for near-infrared spectra.
TrAC Trends in Analytical Chemistry, 28(10), 1201–1222.
<https://doi.org/10.1016/j.trac.2009.07.007>
* Shepherd, K. D., & Markus G. Walsh. (n.d.). Infrared
spectroscopy—enabling an evidence-based diagnostic surveillance
approach to agricultural and environmental management in developing
countries. <https://doi.org/10.1255/jnirs.716>
* Sila, A. M., Shepherd, K. D., & Pokhariyal, G. P. (2016). Evaluating
the utility of mid-infrared spectral subspaces for predicting soil
properties. Chemometrics and Intelligent Laboratory Systems, 153,
92–105. <https://doi.org/10.1016/j.chemolab.2016.02.013>
* Terhoeven-Urselmans, T., Vagen, T.-G., Spaargaren, O., & Shepherd,
K. D. (2010). Prediction of Soil Fertility Properties from a
Globally Distributed Soil Mid-Infrared Spectral Library. Soil
Science Society of America Journal, 74(5), 1792.
<https://doi.org/10.2136/sssaj2009.0218>
* Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J.,
Demattê, J. A. M., Shepherd, K. D., … Ji, W. (2016). A global
spectral library to characterize the world’s soil. Earth-Science
Reviews, 155, 198–230.
<https://doi.org/10.1016/j.earscirev.2016.01.012>
* Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik,
L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid
infrared or combined diffuse reflectance spectroscopy for
simultaneous assessment of various soil properties. Geoderma,
131(1–2), 59–75. <https://doi.org/10.1016/j.geoderma.2005.03.007>
* Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a
basic tool of chemometrics. Chemometrics and Intelligent Laboratory
Systems, 58(2), 109–130.
<https://doi.org/10.1016/S0169-7439(01)00155-1>
## Principles and application of plant infrared spectroscopy
* Lebot, V, Malapa, R., & Jung, M. (2013). Use of NIRS for the rapid prediction of total N, minerals, sugars and starch in tropical root and tuber crops. New Zealand Journal of Crop and Horticultural Science, 41(3), 144–153. https://doi.org/10.1080/01140671.2013.798335
* Lebot, Vincent, Champagne, A., Malapa, R., & Shiley, D. (2009). NIR Determination of Major Constituents in Tropical Root and Tuber Crop Flours. Journal of Agricultural and Food Chemistry, 57(22), 10539–10547. https://doi.org/10.1021/jf902675n
* van Maarschalkerweerd, M., & Husted, S. (2015). Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00169
## Statistical modeling based on spectroscopy
* Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78(1–2), 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011
* Eriksson, L., Trygg, J., & Wold, S. (2014). A chemometrics toolbox based on projections and latent variables: A chemometrics toolbox based on projections and latent variables. Journal of Chemometrics, 28(5), 332–346. https://doi.org/10.1002/cem.2581
* Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer series in statistics Springer, Berlin. Retrieved from http://statweb.stanford.edu/~tibs/book/preface.ps
* Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, Articles, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
* Stevens, A., & Ramirez–Lopez, L. (2014). An introduction to the prospectr package. R Package Vignette, Report No.: R Package Version 0.1, 3. Retrieved from ftp://200.236.31.2/CRAN/web/packages/prospectr/vignettes/prospectr-intro.pdf
* Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1