-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
44 lines (36 loc) · 1.52 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from src import model_torch
from src import model_original
from src.diffusion import GaussianDiffusion, DDIM_Sampler
from src.inferencer import Inferencer
import yaml
import argparse
def main(args):
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
unet_cfg = config['unet']
ddim_cfg = config['ddim']
trainer_cfg = config['inferencer']
image_size = unet_cfg['image_size']
if config['type'] == 'original':
unet = model_original.Unet(**unet_cfg).to(args.device)
elif config['type'] == 'torch':
unet = model_torch.Unet(**unet_cfg).to(args.device)
else:
unet = None
print("Unet type must be one of ['original', 'torch']")
exit()
diffusion = GaussianDiffusion(unet, image_size=image_size).to(args.device)
ddim_samplers = list()
if isinstance(ddim_cfg, dict):
for sampler_cfg in ddim_cfg.values():
ddim_samplers.append(DDIM_Sampler(diffusion, **sampler_cfg))
inferencer = Inferencer(diffusion, ddim_samplers=ddim_samplers, time_step=diffusion.time_step, **trainer_cfg)
inferencer.load(args.load)
inferencer.inference()
if __name__ == '__main__':
parse = argparse.ArgumentParser(description='DDPM & DDIM')
parse.add_argument('-c', '--config', type=str, default='./config/inference/cifar10.yaml')
parse.add_argument('-l', '--load', type=str, default=None)
parse.add_argument('-d', '--device', type=str, choices=['cuda', 'cpu'], default='cuda')
args = parse.parse_args()
main(args)