-
Notifications
You must be signed in to change notification settings - Fork 8
/
generate_segment_trajectories.py
executable file
·459 lines (421 loc) · 19 KB
/
generate_segment_trajectories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import glob
import pandas as pd
import cv2
import numpy as np
import os
from dtw import dtw
# Here, we use L2 norm as the element comparison distance
l2_norm = lambda x, y: np.linalg.norm((x - y))
def get_agent_ids(folder, round_name):
files = glob.glob(f"{folder}/{round_name}*")
def parse_and_get_vehicle_id(st):
# This function assumes a specific convention on the agent map filenames, that another module will generate
_, filename = os.path.split(st)
# breakpoint()
# tl_sl2_round_0_vehicle_388_frame_184.csv.gz
return int(
filename[filename.rfind("vehicle_") + 8 : filename.rfind("frame_") - 1]
)
agent_ids = set([parse_and_get_vehicle_id(s) for s in files])
return list(agent_ids)
def get_max_frame_value(folder, round_name):
files = glob.glob(f"{folder}/{round_name}*")
def parse_and_get_frame_id(st):
_, filename = os.path.split(st)
# print(filename)
return int(filename[filename.rfind("frame_") + 6 : filename.rfind("csv") - 1])
# return int(filename.split("_")[5].split(".")[0])
frame_ids = set([parse_and_get_frame_id(s) for s in files])
return max(frame_ids)
def get_basic_dataframe(
subfolders=["round_0"], agent_map_folder="../agent_maps", max_agents=100,
):
FRAME_LENGTH = 25 # how long should one unit of the scenario be/ what duration is enough to identify an anomaly
RADIUS = 15 # how far should we look
result = []
for folder in subfolders:
print(f"Processing {folder}")
round_name_file = f"{agent_map_folder}/{folder}/round_names.txt"
round_agent_map_folder = f"{agent_map_folder}/{folder}"
with open(round_name_file) as f:
round_names = f.read().split("\n")
round_result = []
for round_id in round_names:
agent_ids = get_agent_ids(round_agent_map_folder, round_name=round_id)
max_frame = get_max_frame_value(round_agent_map_folder, round_name=round_id)
for agent_id in agent_ids:
# the below range function samples all non overlapping segments in the recording, can have some smart sampling here
for start_index in range(0, max_frame, FRAME_LENGTH):
dtw_maps = []
if start_index + FRAME_LENGTH > max_frame:
continue
gen = GenerateSegmentTrajectories(
round_name=round_id,
agent_id=agent_id,
radius=RADIUS,
start_index=start_index,
frame_length=FRAME_LENGTH,
agent_map_folder=round_agent_map_folder,
)
if gen.generate_basic_frame_level_stats():
round_result.append(gen.basic_frame_df)
if (len(result) + len(round_result)) >= max_agents:
result = result + round_result
return result
# breakpoint()
result = result + round_result
return result
def get_dtw_maps(
subfolders=["round_0"],
agent_map_folder="../agent_maps",
max_channels=10,
max_dtw_maps=100,
):
FRAME_LENGTH = 25 # how long should one unit of the scenario be/ what duration is enough to identify an anomaly
RADIUS = 15 # how far should we look
dtw_result = []
for folder in subfolders:
print(agent_map_folder, folder)
round_name_file = f"{agent_map_folder}/{folder}/round_names.txt"
round_agent_map_folder = f"{agent_map_folder}/{folder}"
with open(round_name_file) as f:
round_names = f.read().split("\n")
# breakpoint()
for round_id in round_names:
agent_ids = get_agent_ids(round_agent_map_folder, round_name=round_id)
max_frame = get_max_frame_value(round_agent_map_folder, round_name=round_id)
# print("Getting Data for - ", round_id, agent_ids, max_frame)
for agent_id in agent_ids:
# the below range function samples all non overlapping segments in the recording, can have some smart sampling here
for start_index in range(0, max_frame, FRAME_LENGTH):
dtw_maps = []
if start_index + FRAME_LENGTH > max_frame:
continue
# print(start_index, max_frame)
# breakpoint()
gen = GenerateSegmentTrajectories(
round_name=round_id,
agent_id=agent_id,
radius=RADIUS,
start_index=start_index,
frame_length=FRAME_LENGTH,
agent_map_folder=round_agent_map_folder,
)
# print(start_index)
try:
gen.generate()
except Exception as exp:
print("error in generate", exp)
breakpoint()
data = gen.get_trajectory_data()
for other_agent in data["sorted_agent_ids"]:
if other_agent == agent_id:
continue
if len(dtw_maps) == max_channels:
break # since sorted_agent_ids is sorted by agent's length, we will get the N longest dtw maps
dist, cost_matrix, acc_cost_matrix, path = dtw(
data["agent_tracks"][agent_id],
data["agent_tracks"][other_agent],
dist=l2_norm,
)
dtw_maps.append(np.expand_dims(acc_cost_matrix.T, axis=0))
# merge 10 dtw maps and make a 10,w,h tensor here and append to parent data list
if len(dtw_maps) > 0:
dtw_tensor = np.vstack(dtw_maps)
if dtw_tensor.shape[0] < max_channels:
# padding missing channels(each channel is one agent-ego pair) with zeros here
pad_size = max_channels - dtw_tensor.shape[0]
pad_obj = np.zeros(
(pad_size, dtw_tensor.shape[1], dtw_tensor.shape[2])
)
dtw_tensor = np.vstack([dtw_tensor, pad_obj])
dtw_result.append(dtw_tensor)
if len(dtw_result) > max_dtw_maps:
return dtw_result
return dtw_result
class GenerateSegmentTrajectories:
def __init__(
self,
round_name: str,
agent_id: int,
radius: float,
start_index: int,
frame_length: int,
agent_map_folder: str = "agent_maps",
save_video_file: str = None,
show_window=True,
) -> None:
self.round = round_name
self.agent_id = agent_id
self.agent_str = f"vehicle_{agent_id}"
self.agent_maps = glob.glob(
f"{agent_map_folder}/{self.round}_{self.agent_str}*.csv.gz"
)
# `st[st.rfind('frame_')+6:st.rfind('csv')-1]`` gets the frame_id from a
# string that looks like 'agent_maps/round_0_vehicle_260_frame_0123.csv.gz'
self.agent_maps.sort(
key=lambda st: int(st[st.rfind("frame_") + 6 : st.rfind("csv") - 1])
)
self.start_index = start_index
self.frame_length = frame_length
self.radius = radius
# for scaling the image (use if the image vis is too small)
self.scale_factor = 10
self.image_shape = (
self.radius * 2 * self.scale_factor,
self.radius * 2 * self.scale_factor,
)
self.car_color = (255, 0, 0) # blue
self.tl_color_map = {
"Red": (0, 0, 255),
"Green": (0, 255, 0),
"Yellow": (0, 180, 180),
}
if save_video_file is not None:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
self.videowriter = cv2.VideoWriter(
save_video_file, fourcc, 20.0, self.image_shape
)
else:
self.videowriter = None
self.show_window = show_window
self.reset_base_map()
def reset_base_map(self):
# create empty opencv image of radius*1.2 size ->self.base_img
self.base_map = (
np.ones((self.image_shape[0], self.image_shape[1], 3), dtype=np.uint8) * 255
)
def world2d_to_img(self, xy_arr):
xy_arr[:, 0] += self.radius # X coord
xy_arr[:, 1] = (xy_arr[:, 1] * -1) + self.radius # Y coord
xy_arr *= self.scale_factor
return xy_arr
def _draw_traffic_light(self, df_row: pd.Series, x: int, y: int, image: np.ndarray):
tl_color = df_row.traffic_light_color
color = self.tl_color_map[tl_color]
tlwidth = 2 # size of square of TL size
return cv2.drawMarker(
image,
(x, y),
color,
markerType=cv2.MARKER_SQUARE,
markerSize=self.scale_factor * tlwidth,
)
def _draw_vehicle(self, df_row: pd.Series, x: int, y: int, image: np.ndarray):
if df_row.pos_x == 0 and df_row.pos_y == 0:
# this is the center vehicle
return cv2.drawMarker(
image,
(x, y),
(0, 0, 0),
markerType=cv2.MARKER_DIAMOND,
markerSize=self.scale_factor * 2,
)
else:
return cv2.circle(
image,
(x, y),
1 * self.scale_factor,
self.car_color,
thickness=cv2.FILLED,
)
def __is_traffic_light(self, type_id):
return "traffic_light" in type_id
def __is_vehicle(self, type_id):
return "vehicle" in type_id
def draw_agent(
self, type_id: str, df_row: pd.Series, x: int, y: int, image: np.ndarray
):
if self.__is_traffic_light(type_id):
return self._draw_traffic_light(df_row, x, y, image)
elif self.__is_vehicle(type_id):
return self._draw_vehicle(df_row, x, y, image)
else:
## draw road signs here
return image
def visualize_frames(self):
# for each frame, visualize and show frames
for frame_file in self.agent_maps:
df = pd.read_csv(frame_file, compression="gzip")
df = df.query(f"abs(pos_x)<{self.radius} & abs(pos_y)<{self.radius}")
xy_arr = df[["pos_x", "pos_y"]].values
points = self.world2d_to_img(xy_arr)
for i in range(points.shape[0]):
agent_type = df.iloc[i].type_id
x = int(points[i][0])
y = int(points[i][1])
self.base_map = self.draw_agent(
agent_type, df.iloc[i], x, y, self.base_map
)
if self.videowriter is not None:
print(self.base_map.shape)
self.videowriter.write(self.base_map)
if self.show_window:
cv2.imshow("Visualization", self.base_map)
if cv2.waitKey(25) & 0xFF == ord("q"):
break
self.reset_base_map()
self.videowriter.release()
## Reset base image
def get_trajectory_data(self):
return {
"merged_df": self.df_merged,
"agent_tracks": self.agent_tracks,
"agent_track_lens": self.agent_track_len,
"sorted_agent_ids": self.sorted_agent_ids,
"agent_metadata_dfs": self.agent_metadata_dfs,
}
def generate_basic_frame_level_stats(self):
### Returns true if successful, false otherwise
### Each row of the basic frame level stats includes information about one frame wrt other agents
i = self.start_index
df_array = []
if len(self.agent_maps) == 0:
print(f"No agent maps for {self.agent_id}")
return False
# load the dataframes from the multiple files(one file per frame_id, agent_id pair)
for k in range(self.frame_length): # segment length
frame_id = i + k
# print(frame_id)frame_id
try:
df = pd.read_csv(self.agent_maps[frame_id], compression="gzip")
df = df.query(f"abs(pos_x)<{self.radius} & abs(pos_y)<{self.radius}")
df_array.append(df)
except Exception as e:
print(f"Faced Exception:{e}")
print(
f"Current frame id:{frame_id}, Agent map count: {len(self.agent_maps)}, Start index:{self.start_index}, Frame Length: {self.frame_length}"
)
# merge all dataframes together
self.df_merged = pd.concat(df_array).reset_index()
frame_grp = self.df_merged.groupby("frame_id")
frame_id_wise_df = {}
for frame_id in frame_grp.groups:
sub_df = self.df_merged.iloc[frame_grp.groups[frame_id]]
frame_id_wise_df[frame_id] = sub_df
self.frame_id_wise_df = frame_id_wise_df
# fmt:off
column_names = [ "frame_id","round_id","ego_agent_id","num_vehicles", "max_velocity_x", "max_velocity_y",
"max_velocity_z", "max_ang_velocity_x", "max_ang_velocity_y", "max_ang_velocity_z", "min_velocity_x",
"min_velocity_y", "min_velocity_z", "min_ang_velocity_x", "min_ang_velocity_y", "min_ang_velocity_z",
"max_acc_x", "max_acc_y", "max_acc_z", "min_acc_x","min_acc_y","min_acc_z"]
# fmt: on
result = []
for frame_id in frame_id_wise_df:
stats = self._calculate_frame_stats(frame_id_wise_df[frame_id], frame_id)
result.append(stats)
self.basic_frame_df = pd.DataFrame(result, columns=column_names)
return True
def _calculate_frame_stats(self, frame_df, frame_id):
frame_id = frame_id
round_id = self.round
num_vehicles = len(frame_df.id.unique())
max_velocity_x = frame_df.velocity_x.max()
max_velocity_y = frame_df.velocity_y.max()
max_velocity_z = frame_df.velocity_z.max()
max_ang_velocity_x = frame_df.angular_vel_x.max()
max_ang_velocity_y = frame_df.angular_vel_y.max()
max_ang_velocity_z = frame_df.angular_vel_z.max()
min_velocity_x = frame_df.velocity_x.min()
min_velocity_y = frame_df.velocity_y.min()
min_velocity_z = frame_df.velocity_z.min()
min_ang_velocity_x = frame_df.angular_vel_x.min()
min_ang_velocity_y = frame_df.angular_vel_y.min()
min_ang_velocity_z = frame_df.angular_vel_z.min()
max_acc_x = frame_df.acc_x.max()
max_acc_y = frame_df.acc_y.max()
max_acc_z = frame_df.acc_z.max()
min_acc_x = frame_df.acc_x.min()
min_acc_y = frame_df.acc_y.min()
min_acc_z = frame_df.acc_z.min()
# potentially add ego stats as separate columns?
# fmt:off
res = [
frame_id, round_id, num_vehicles, self.agent_id, max_velocity_x, max_velocity_y, max_velocity_z,
max_ang_velocity_x, max_ang_velocity_y, max_ang_velocity_z, min_velocity_x, min_velocity_y,
min_velocity_z, min_ang_velocity_x, min_ang_velocity_y, min_ang_velocity_z, max_acc_x, max_acc_y,
max_acc_z, min_acc_x, min_acc_y, min_acc_z,
]
# fmt:on
return res
def generate(self):
"""
Uses the agent id, the start frame ids and segment length generates agent level trajectories of a fixed size segment (frame_length)
Generates the following objects:
self.df_merged = the merged dataframe for all frames
self.agent_tracks = The [Nx2] sized trajectories for all agents in the scenario,
if the agent wasn't there in the frame at a given time,
the coordinate value is [self.radius + 1, self.radius + 1]
self.agent_track_len = the effective length of the trajectories(only valid values)
self.sorted_agent_ids = agent ids sorted by their trajectory length
(agents with the most duration are higher in the list)
"""
i = self.start_index
df_array = []
# load the dataframes from the multiple files(one file per frame_id, agent_id pair)
for k in range(self.frame_length): # segment length
frame_id = i + k
# print(frame_id)
# breakpoint()
if frame_id >= len(self.agent_maps):
print(
f"Trying to access frame {frame_id} but only have {len(self.agent_maps)}"
)
# breakpoint()
break
df = pd.read_csv(self.agent_maps[frame_id], compression="gzip")
df = df.query(f"abs(pos_x)<{self.radius} & abs(pos_y)<{self.radius}")
df_array.append(df)
# merge all dataframes together
if len(df_array) == 0:
self.df_merged = pd.DataFrame()
self.agent_tracks = {}
self.agent_metadata_dfs = {}
self.agent_track_len = {}
self.sorted_agent_ids = []
return
self.df_merged = pd.concat(df_array).reset_index()
# group all dataframes by id, so that we can get agent level metrics across time
agent_grp = self.df_merged.groupby("id")
self.agent_tracks = {}
self.agent_metadata_dfs = {}
self.agent_track_len = {}
for agent_id in agent_grp.groups:
sub_df = self.df_merged.iloc[agent_grp.groups[agent_id]]
# empty template for the trajectories
tracks = [
[self.radius + 1, self.radius + 1] for _ in range(self.frame_length)
]
track_len = 0
# populate the empty template
for idx, row in sub_df.iterrows():
frame_idx = row.frame_id - self.start_index
# if row.frame_id == 0:
# # check if the object is within the car position add to the current frame
# print("0 frame id")
try:
tracks[frame_idx] = [row.pos_x, row.pos_y]
except:
breakpoint()
track_len += 1
self.agent_tracks[agent_id] = np.array(tracks)
self.agent_metadata_dfs[agent_id] = sub_df
self.agent_track_len[agent_id] = track_len
self.sorted_agent_ids = list(self.agent_track_len.keys())
self.sorted_agent_ids.sort(key=lambda x: self.agent_track_len[x], reverse=True)
def test_visualize():
round_name = "scenario1.log"
folder = "agent_maps/debris_avoidance_recordings"
agent_ids = get_agent_ids(folder, round_name)
obj = GenerateSegmentTrajectories(
round_name=round_name,
agent_id=agent_ids[1],
radius=20,
start_index=0,
frame_length=50,
agent_map_folder=folder,
save_video_file="testvideo.mp4",
)
obj.visualize_frames()
if __name__ == "__main__":
test_visualize()