forked from janisshin/BMCA-pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunBMCA.py
247 lines (202 loc) · 9.4 KB
/
runBMCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from src import antemll
#################################################
#################################################
import tellurium as te
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import aesara.tensor as at
import aesara
floatX = aesara.config.floatX
import pymc as pm
import numpy as np
import cobra
import os
from scipy import stats
import scipy as sp
from src import util
##########################################################
##########################################################
def runBMCA(ant, data_file, output_dir, n_iter=45000, n_samp=3, omit=None):
if omit:
output_dir = output_dir + f'/output-omit{omit}/'
else:
output_dir = output_dir + '/output-allData/'
try:
os.makedirs(output_dir)
except FileExistsError:
pass
r = te.loada(ant)
r.conservedMoietyAnalysis = True
r.steadyState()
enzymes = ['e_' + i for i in r.getReactionIds()]
internal = r.getFloatingSpeciesIds()
external = r.getBoundarySpeciesIds()
fluxes = ['v_' + i for i in r.getReactionIds()]
data_file_A = data_file + '_0.1.csv'
data_file_B = data_file + '_0.2.csv'
data_file_C = data_file + '_0.3.csv'
data_file_D = data_file + '_0.4.csv'
data_file_E = data_file + '_0.5.csv'
data_file_F = data_file + '_1.01.csv'
data_file_G = data_file + '_1.5.csv'
data_file_H = data_file + '_3.csv'
data_file_I = data_file + '_5.csv'
data_file_J = data_file + '_7.csv'
data_file_K = data_file + '_10.csv'
pt_labels = ['0.1x', '0.2x', '0.3x', '0.4x', '0.5x','1.01x',
'1.5x', '3x', '5x', '7x', '10x']
data_files = [data_file_A, data_file_B, data_file_C, data_file_D,
data_file_E, data_file_F, data_file_G, data_file_H,
data_file_I, data_file_J, data_file_K]
data = []
if omit is None:
data = data_files
if omit == 'fluxes':
for file in data_files:
data.append(pd.read_csv(file)[enzymes+internal+external])
v_star = pd.read_csv(file)[fluxes].iloc[0].values
elif omit == 'enzymes':
for file in data_files:
data.append(pd.read_csv(file)[fluxes+internal+external])
elif omit == 'internal':
for file in data_files:
data.append(pd.read_csv(file)[fluxes+enzymes+external])
elif omit == 'external':
for file in data_files:
data.append(pd.read_csv(file)[fluxes+enzymes+internal])
BMCA_objs = []
for i in data_files:
BMCA_objs.append(antemll.antemll(ant, i))
### Run BMCA
traces = []
if omit is None:
for i in BMCA_objs:
traces.append(util.run_ADVI(i, output_dir, n_iter, n_samp=n_samp))
elif omit == 'fluxes':
for i in BMCA_objs:
traces.append(util.runBayesInf_fluxes(i, r, data[0], output_dir,
n_iter, n_samp=n_samp))
elif omit == 'enzymes':
for i in BMCA_objs:
traces.append(util.runBayesInf_enzymes(i, r, data[0], output_dir,
n_iter, n_samp=n_samp))
elif omit == 'internal':
for i in BMCA_objs:
traces.append(util.runBayesInf_internal(i, r, data[0], output_dir,
n_iter, n_samp=n_samp))
elif omit == 'external':
for i in BMCA_objs:
traces.append(util.runBayesInf_external(i, r, data[0], output_dir,
n_iter, n_samp=n_samp))
ExTraces = []
if n_samp == 1:
for i in traces:
ExTraces.append((i['posterior']['Ex']).to_numpy().squeeze())
elif n_samp > 1:
for i in traces:
Ex_samples = []
for ii in range(n_samp):
Ex_samples.append((i[ii]['posterior']['Ex']).to_numpy().squeeze())
trace = np.concatenate(Ex_samples)
ExTraces.append(trace)
medExs =[]
for i in ExTraces:
medExs.append(np.median(i, axis=0))
### Compare elasticity results with ground truth values
gtE = pd.DataFrame(r.getScaledElasticityMatrix(), index=r.getReactionIds(), columns=r.getFloatingSpeciesIds())
gtE['pt'] = ['gt']* len(gtE)
gtE.index.name = 'reactions'
gtE.reset_index(inplace=True)
gtE.set_index(['pt', 'reactions'], inplace=True)
medEx_pile = [gtE]
for i, lvl in enumerate(pt_labels):
mdEx = pd.DataFrame(medExs[i], index=r.getReactionIds(), columns=r.getFloatingSpeciesIds())
mdEx_by_pt = pd.concat([mdEx], keys=[lvl], names=['perturbation'])
medEx_pile.append(mdEx_by_pt)
medEx_df = pd.concat(medEx_pile)
medEx_df.to_csv(output_dir + 'medianPredictedExs.csv')
### CALCULATING FCCs
gtFCC = pd.DataFrame(r.getScaledFluxControlCoefficientMatrix(), index=r.getReactionIds(), columns=r.getReactionIds())
# we are trying to add the ground truth to the larger
# df of FCC predictions
gtFCC.index.name = 'pt_rxn'
gtFCC.reset_index(inplace=True)
gtFCC['pt']=['gt']*len(gtFCC)
gtFCC.set_index(['pt', 'pt_rxn'], inplace=True)
postFCCs = []
if omit == 'enzymes':
EtTraces = []
et_samples = []
for i in traces:
for ii in range(n_samp):
et_samples.append((i[ii]['posterior']['e_t']).to_numpy().squeeze())
trace = np.concatenate(et_samples)
EtTraces.append(trace)
medEts =[]
for i in EtTraces:
medEts.append(np.median(i, axis=0).transpose())
for i, med_et in enumerate(medEts):
BMCA_objs[i].vn[BMCA_objs[i].vn == 0] = 1e-6
a = np.diag(med_et / BMCA_objs[i].vn.values)
postFCCs.append(util.estimate_CCs(BMCA_objs[i], ExTraces[i], n_samp, a))
elif omit == 'fluxes':
vtTraces = []
vt_samples = []
for i in traces:
for ii in range(n_samp):
vt_samples.append((i[ii]['posterior']['v_t']).to_numpy().squeeze())
trace = np.concatenate(vt_samples)
vtTraces.append(trace)
medvts =[]
for i in vtTraces:
medvts.append(np.median(i, axis=0).transpose())
for i, med_vt in enumerate(medvts):
BMCA_objs[i].vn[BMCA_objs[i].vn == 0] = 1e-6
a = np.diag(BMCA_objs[i].en.values / med_vt)# BMCA_obj.vn.values)
postFCCs.append(util.estimate_CCs(BMCA_objs[i], ExTraces[i], n_samp, a))
else:
print('else')
for i, BMCA_obj in enumerate(BMCA_objs):
BMCA_obj.vn[BMCA_obj.vn == 0] = 1e-6
a = np.diag(BMCA_obj.en.values / BMCA_obj.vn.values)
postFCCs.append(util.estimate_CCs(BMCA_obj, ExTraces[i], n_samp, a))
postFCCdfs = pd.concat([util.append_FCC_df(postFCCs[i], pt_labels[i], r) for i in range(len(postFCCs))])
prdFCCs = pd.pivot_table(postFCCdfs, index=['pt_str','pt_rxn'], aggfunc='median', sort=False)
prdFCCs.to_csv(output_dir + 'predictedFCCs.csv')
prdFCCmeds = pd.concat([gtFCC, prdFCCs])
prdFCCmeds.to_csv(output_dir + 'predictedFCCmedians.csv')
## Evaluating FCC ranking
gtFCC=pd.DataFrame(r.getScaledFluxControlCoefficientMatrix(), columns=r.getReactionIds(), index=r.getReactionIds()).abs()
m1 = gtFCC.index.values[:, None] == gtFCC.columns.values
gtFCC = pd.DataFrame(np.select([m1], [float('Nan')], gtFCC), columns=gtFCC.columns, index=gtFCC.index)
gtFCC_rankings= gtFCC.rank(axis=1, ascending=False, na_option='keep')
m1 = gtFCC_rankings.isin([1.0])
m2 = gtFCC_rankings.isin([2.0])
m3 = gtFCC_rankings.isin([3.0])
a = m1.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
b = m2.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
c = m3.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
trueRanks = pd.concat([a,b,c], axis=1)
trueRanks['topThree'] = trueRanks[0] + trueRanks[1] + trueRanks[2]
scores = []
for pt_level in postFCCs:
postFCC_med=pd.DataFrame(np.median(pt_level, axis=0), columns=r.getReactionIds(), index=r.getReactionIds()).abs()
# m1 = gtFCC.index.values[:, None] == gtFCC.columns.values
postFCC_med = pd.DataFrame(np.select([m1], [float('Nan')], postFCC_med), columns=gtFCC.columns, index=gtFCC.index)
postFCC_med_rankings= postFCC_med.rank(axis=1, ascending=False, na_option='keep')
m1 = postFCC_med_rankings.isin([1.0])
m2 = postFCC_med_rankings.isin([2.0])
m3 = postFCC_med_rankings.isin([3.0])
a = m1.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
b = m2.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
c = m3.mul(r.getReactionIds()).apply(lambda x: [i for i in x if i], axis=1)
prdRanks = pd.concat([a,b,c], axis=1)
prdRanks['topThree'] = prdRanks[0] + prdRanks[1] + prdRanks[2]
scores.append([len([i for i in prdRanks['topThree'][rxn] if i in trueRanks['topThree'][rxn]]) for rxn in r.getReactionIds()])
topThreeCheckdf = pd.DataFrame(scores, columns=r.getReactionIds(), index=pt_labels).T
topThreeCheckdf.to_csv(output_dir + 'top3breakdown.csv')
# topThreeCheckdf.style.background_gradient(cmap='RdYlBu', axis=None)
summary = (topThreeCheckdf.sum(axis=0)/(len(r.getReactionIds())*3)).round(3)
summary.to_csv(output_dir + 'top3summary.csv')