-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_gnn.py
57 lines (48 loc) · 2.11 KB
/
evaluate_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import torch
import pickle
import data_processing
import numpy as np
from model import load_model
from copy import deepcopy
from dgl.dataloading import GraphDataLoader
def evaluate_gnn(args, data):
feature_encoder, valid_data, test_data = data
model = load_model(args)
model.eval()
evaluate(model, 'valid', valid_data, args)
evaluate(model, 'test', test_data, args)
def evaluate(model, mode, data, args):
model.eval()
with torch.no_grad():
# calculate embeddings of all products as the candidate pool
all_product_embeddings = []
product_dataloader = GraphDataLoader(data, batch_size=args.batch_size)
for _, product_graphs in product_dataloader:
product_embeddings = model(product_graphs)
all_product_embeddings.append(product_embeddings)
all_product_embeddings = torch.cat(all_product_embeddings, dim=0)
# rank
all_rankings = []
reactant_dataloader = GraphDataLoader(data, batch_size=args.batch_size)
i = 0
for reactant_graphs, _ in reactant_dataloader:
reactant_embeddings = model(reactant_graphs)
ground_truth = torch.unsqueeze(torch.arange(i, min(i + args.batch_size, len(data))), dim=1)
i += args.batch_size
if torch.cuda.is_available():
ground_truth = ground_truth.cuda(args.device)
dist = torch.cdist(reactant_embeddings, all_product_embeddings, p=2)
sorted_indices = torch.argsort(dist, dim=1)
rankings = ((sorted_indices == ground_truth).nonzero()[:, 1] + 1).tolist()
all_rankings.extend(rankings)
# calculate metrics
all_rankings = np.array(all_rankings)
mrr = float(np.mean(1 / all_rankings))
mr = float(np.mean(all_rankings))
h1 = float(np.mean(all_rankings <= 1))
h3 = float(np.mean(all_rankings <= 3))
h5 = float(np.mean(all_rankings <= 5))
h10 = float(np.mean(all_rankings <= 10))
print('%s mrr: %.4f mr: %.4f h1: %.4f h3: %.4f h5: %.4f h10: %.4f' % (mode, mrr, mr, h1, h3, h5, h10))
return mrr