-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathevaluate_euroc.py
110 lines (93 loc) · 4.45 KB
/
evaluate_euroc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import sys
import associate
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from align import *
#support format: timestamp tx ty tz qx qy qz qw
# file state_groundtruth_estimate0/data.csv
def format_euroc(file, save_file):
fout = open(save_file, 'w')
for line in open(file).readlines():
if line[0] != '#' and len(line)>0:
v = line.strip().split(',')
fout.write('%f %s %s %s %s %s %s %s\n'%(float(v[0])/1e9,v[1],v[2],v[3],v[5],v[6],v[7],v[4]))
# file vio.txt
def format_own(file, save_file):
fout = open(save_file, 'w')
for line in open(file).readlines():
if line[0] != '#' and len(line)>0:
v = line.strip().split(' ')
if len(v) > 8:
fout.write('%s %s %s %s %s %s %s %s\n'%(v[0],v[1],v[2],v[3],v[5],v[6],v[7],v[4]))
def ate(first_file, second_file, offset = 0, max_diff = 0.02, scale = 1.0, plot = 1, save_png = None):
first_list = associate.read_file_list(first_file)
second_list = associate.read_file_list(second_file)
matches = associate.associate(first_list, second_list,float(offset),float(max_diff))
if len(matches)<2:
sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?")
first_xyz = np.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose()
second_xyz = np.matrix([[float(value)*float(scale) for value in second_list[b][0:3]] for a,b in matches]).transpose()
rot,trans,trans_error = align(second_xyz, first_xyz)
first_stamps = first_list.keys()
first_stamps.sort()
first_xyz_full = np.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose()
second_stamps = second_list.keys()
second_stamps.sort()
second_xyz_full = np.matrix([[float(value)*float(scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose()
second_xyz_full_aligned = rot * second_xyz_full + trans
rmse = np.sqrt(np.dot(trans_error,trans_error) / len(trans_error))
emean = np.mean(trans_error)
emedian = np.median(trans_error)
estd = np.std(trans_error)
emin = np.min(trans_error)
emax = np.max(trans_error)
name = os.path.basename(first_file)[:-4]
if save_png is not None or plot:
fig = plt.figure()
ax = fig.add_subplot(111)
plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"red","ground truth")
plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"blue","estimated")
ax.legend()
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
plt.title(name)
if save_png is not None:
plt.savefig(save_png)
if plot:
plt.show()
return len(trans_error), rmse, emean, emedian, estd, emin, emax
def cost(res_file):
ts = [float(x.strip().split(' ')[-1]) for x in open(res_file).readlines() if x.strip()[0]!='#']
ts = ts[int(len(ts)*0.1):]
return np.mean(ts), np.min(ts), np.max(ts)
def single_evaluate(res_file, gt_file, save_png = None):
out_res_file = os.path.join(os.path.dirname(res_file),
os.path.basename(res_file).replace('out_','est_'))
format_own(res_file, out_res_file)
return ate(gt_file, out_res_file, plot = False, save_png = save_png) + cost(res_file)
def batch_evaluate(res_dir, gt_dir):
eval_table = {}
for file in sorted(os.listdir(res_dir)):
if file[:4]=='out_' and file[-4:]=='.txt':
name = file[4:-4]
gt_file = os.path.join(gt_dir, '%s.txt'%name)
if os.path.exists(gt_file):
eval_table[name] = single_evaluate(os.path.join(res_dir, file), gt_file,
os.path.join(res_dir,'traj_%s.png'%name))
if len(eval_table.keys()) > 0:
save_data = pd.DataFrame(eval_table)
save_data.index = ['N','rmse','mean','median','std','min','max','tmean','tmin','tmax']
save_data = save_data.T
save_data.to_csv(os.path.join(vio_res_dir, 'result.csv'))
print(save_data[['rmse','min','max','N','tmean']])
else:
print("No valid trajectory 'out_*.txt' in: %s"%res_dir)
if __name__ == '__main__':
# Usage: python evaluate_euroc.py <vio_result_dir> <EuRoC zip dir>
vio_res_dir = '/home/symao/Desktop/msckf'
gt_dir = os.path.join(sys.path[0],'groundtruth')
if len(sys.argv) > 1:
vio_res_dir = sys.argv[1]
batch_evaluate(vio_res_dir,gt_dir)