-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartition_cla_rank.py
284 lines (219 loc) · 12.5 KB
/
partition_cla_rank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# 基于Partition v2的结果,进行个数分类的计算
import math
import os
import numpy as np
import torch
from torch import optim
import torch.nn.functional as F
from transformers.utils.dummy_pt_objects import FlaubertForQuestionAnswering
from dataset import PartitionClaDataset, PartitionPredictDataset, PartitionClaRankDataset
from log import Logger
from argparse import ArgumentParser
from utils import print_args, get_optimizer_and_scheduler, load_nsp_bert, compute_kl_loss, read_partition_cla_rank_data
from torch.utils.data import DataLoader
from model import BertAttentionFfnAdapterForMaskedLM
from tqdm import tqdm
from sklearn.metrics import classification_report, accuracy_score, f1_score
def main():
parser = ArgumentParser()
#任务配置
parser.add_argument('-device', default=0, type=int)
parser.add_argument('-output_name', default='test', type=str)
parser.add_argument('-train_batch_size', default=128, type=int) #如果是k fold合并模型进行预测,只需设置为对应k_fold模型对应的output path
parser.add_argument('-eval_batch_size', default=256, type=int) #如果是k fold合并模型进行预测,只需设置为对应k_fold模型对应的output path
parser.add_argument('-max_len', default=128, type=int)
parser.add_argument('-dropout', default=0.3, type=float)
parser.add_argument('-print_loss_step', default=2, type=int)
parser.add_argument('-lr', default=2e-5, type=float)
parser.add_argument('-epoch_num', default=20, type=int)
parser.add_argument('-num_workers', default=4, type=int)
parser.add_argument('-steps_per_epoch', default=200, type=int)
parser.add_argument('-type', default='train', type=str)
parser.add_argument('-saved_model_path', default=None, type=str)
parser.add_argument('-r_drop', default='no', type=str)
parser.add_argument('-rank_use_which_partition', default=0, type=int) # 0表示不使用parition, 1表示使用rule, 2表示使用模型的partition 就是之前的use_which_parititon
parser.add_argument('-data_path', default='/home/liangming/nas/ml_project/Biye/ThirdChapter/split_rank_data', type=str) # 是否使用规则
parser.add_argument('-grad_acc_step', default=4, type=int) # 梯度累计步数
parser.add_argument('-code_metric', default='alphabet', type=str) # icd使用的类型:alphabet or icd
args = parser.parse_args()
args.r_drop = args.r_drop == 'yes'
output_path = os.path.join('./output1/Bert_partition_cla_rank', args.output_name)
if not os.path.exists(output_path):
os.makedirs(output_path)
#定义log参数
logger = Logger(output_path,'main').logger
#打印args
print_args(args, logger)
#读取数据
logger.info('#' * 20 + 'loading data and model' + '#' * 20)
train_data, dev_data, test_data = read_partition_cla_rank_data(args.data_path, args, logger)
#读取模型
pretrained_model_path = '/home/liangming/nas/lm_params/chinese_L-12_H-768_A-12'
bert_model, bert_tokenizer, bert_config = load_nsp_bert(pretrained_model_path, logger, args)
bert_model = bert_model.to(args.device)
if args.type == 'train':
if args.saved_model_path is not None:
logger.info('load saved model from {}'.format(args.saved_model_path))
checkpoint = torch.load(args.saved_model_path, map_location='cpu')
bert_model.load_state_dict(checkpoint)
bert_model = bert_model.to(args.device)
# #准备数据
train_dataset = PartitionClaRankDataset(train_data, bert_tokenizer, args, shuffle=True, while_true=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, collate_fn=train_dataset.collate_fn)
dev_dataset = PartitionClaRankDataset(dev_data, bert_tokenizer, args, shuffle=True, while_true=False)
dev_dataloader = DataLoader(dev_dataset, batch_size=args.eval_batch_size, collate_fn=dev_dataset.collate_fn)
test_dataset = PartitionClaRankDataset(test_data, bert_tokenizer, args, shuffle=True, while_true=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.eval_batch_size, collate_fn=test_dataset.collate_fn)
#配置optimizer和scheduler
t_total = args.steps_per_epoch * args.epoch_num
optimizer, scheduler = get_optimizer_and_scheduler(bert_model, t_total, args.lr, 0)
train(bert_model, train_dataloader, dev_dataloader, test_dataloader, optimizer, scheduler, args, output_path, logger)
elif args.type == 'evaluate':
logger.info('load model from {}'.format(args.saved_model_path))
checkpoint = torch.load(args.saved_model_path, map_location='cpu')
bert_model.load_state_dict(checkpoint)
bert_model = bert_model.to(args.device)
test_dataset = PartitionClaRankDataset(test_data, bert_tokenizer, args, shuffle=False, while_true=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.eval_batch_size, collate_fn=test_dataset.collate_fn)
evaluate(test_dataloader, bert_model, args, logger)
elif args.type == 'predict':
logger.info('load model from {}'.format(args.saved_model_path))
checkpoint = torch.load(args.saved_model_path, map_location='cpu')
bert_model.load_state_dict(checkpoint)
bert_model = bert_model.to(args.device)
test_dataset = PartitionClaRankDataset(test_data, bert_tokenizer, args, shuffle=False, while_true=False)
test_dataloader = DataLoader(test_dataset, batch_size=args.eval_batch_size, collate_fn=test_dataset.collate_fn)
pred_ids = predict(test_dataloader, bert_model, args, logger)
import pickle
pickle.dump(pred_ids, open(os.path.join(args.saved_model_path.replace('best_merge_acc_model.pth', 'test_pred_num_ids')), 'wb'))
def train(model, train_dataloader, dev_dataloader, test_dataloader, optimizer, scheduler, args, output_path, logger):
model.train()
loss_list = []
acc_list = []
best_only_rank_num_acc = 0
best_merge_acc = 0
step = 0
model_saved_path = os.path.join(output_path, 'saved_model')
if not os.path.exists(model_saved_path):
os.makedirs(model_saved_path)
batch_iter = iter(train_dataloader)
for epoch in range(args.epoch_num):
logger.info('#'*20 + 'Epoch{}'.format(epoch + 1) + '#'*20)
iteration = tqdm(range(args.steps_per_epoch), desc='Training')
model.zero_grad()
for _ in iteration:
loss = 0
batch = next(batch_iter)
input_ids, attention_mask, gen_pred_scores, cla_labels = [x.to(args.device) for x in batch]
output = model.forward(input_ids, attention_mask, labels=cla_labels)
loss += output.loss
if args.r_drop:
output1 = model.forward(input_ids, attention_mask)
loss += compute_kl_loss(output.logits, output1.logits)
loss_list.append(loss.item())
lr = optimizer.state_dict()['param_groups'][0]['lr']
logits = output.logits
acc = (logits.argmax(dim=-1) == cla_labels).sum() / len(cla_labels) * 100
acc_list.append(acc.item())
if (step + 1) % args.print_loss_step == 0:
iteration.set_description(
'total loss:{},token acc : {}%,lr:{}'.format(
round(sum(loss_list) / len(loss_list), 4),
round(sum(acc_list) / len(acc_list), 2),
round(lr, 7)))
loss.backward()
step += 1
# 每4步累积梯度
if step % args.grad_acc_step == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
logger.info('#'*20 + 'Evaluate' + '#'*20)
only_gen_num_acc, only_rank_num_acc, merge_num_acc = evaluate(dev_dataloader, model, args, logger)
model.train()
if only_rank_num_acc > best_only_rank_num_acc:
best_only_rank_num_acc = only_rank_num_acc
logger.info('save model at best_only_rank_num_acc {}'.format(best_only_rank_num_acc))
torch.save(model.state_dict(), os.path.join(model_saved_path, 'best_only_rank_num_acc_model.pth'))
if merge_num_acc > best_merge_acc:
best_merge_acc = merge_num_acc
logger.info('save model at best_merge_acc {}'.format(best_merge_acc))
torch.save(model.state_dict(), os.path.join(model_saved_path, 'best_merge_acc_model.pth'))
logger.info('#'*20 + 'Evaluate' + '#'*20)
logger.info('Evaluate best only rank model')
logger.info('load model from {}'.format(os.path.join(model_saved_path, 'best_only_rank_num_acc_model.pth')))
checkpoint = torch.load(os.path.join(model_saved_path, 'best_only_rank_num_acc_model.pth'), map_location='cpu')
model.load_state_dict(checkpoint)
model = model.to(args.device)
evaluate(test_dataloader, model, args, logger)
logger.info('Evaluate best merge model')
logger.info('load model from {}'.format(os.path.join(model_saved_path, 'best_merge_acc_model.pth')))
checkpoint = torch.load(os.path.join(model_saved_path, 'best_merge_acc_model.pth'), map_location='cpu')
model.load_state_dict(checkpoint)
model = model.to(args.device)
evaluate(test_dataloader, model, args, logger)
def evaluate(dataloader, model, args, logger):
y_pred = []
gen_pred_scores = []
y_true = []
model.eval()
with torch.no_grad():
for item in tqdm(dataloader, total=math.floor(len(dataloader.dataset.data_list) * 5 / dataloader.batch_size)):
input_ids, attention_mask, batch_gen_pred_scores, cla_labels = [x.to(args.device) for x in item]
output = model.forward(input_ids, attention_mask)
logits = output.logits
y_pred.append(torch.log_softmax(logits, dim=-1)[:, 1])
gen_pred_scores.append(batch_gen_pred_scores)
y_true.append(cla_labels)
y_pred = torch.cat(y_pred, dim=0).reshape(-1, 5)
gen_pred_scores = torch.cat(gen_pred_scores, dim=0).reshape(-1, 5)
y_true = torch.cat(y_true, dim=0).reshape(-1, 5)
assert len(y_pred) == len(gen_pred_scores)
assert len(y_pred) == len(y_true)
only_gen_num_acc = 0
only_rank_num_acc = 0
merge_num_acc = 0
pred_ids = []
for pred, gen_pred, true, data in zip(y_pred, gen_pred_scores, y_true, dataloader.dataset.data_list):
only_rank_num_acc += true[pred.argmax().item()].item()
only_gen_num_acc += true[gen_pred.argmax().item()].item()
merge_num_acc += true[(gen_pred + pred).argmax().item()].item()
pred_ids.append((true[(gen_pred + pred).argmax().item()].item(), (gen_pred + pred).argmax().item()))
import pickle
pickle.dump(pred_ids, open('./rank_pred_ids', 'wb'))
only_gen_num_acc = only_gen_num_acc / len(y_pred) * 100
only_rank_num_acc = only_rank_num_acc / len(y_pred) * 100
merge_num_acc = merge_num_acc / len(y_pred) * 100
logger.info('only gen num acc : {:.2f}'.format(only_gen_num_acc))
logger.info('only rank num acc : {:.2f}'.format(only_rank_num_acc))
logger.info('merge num acc : {:.2f}'.format(merge_num_acc))
return only_gen_num_acc, only_rank_num_acc, merge_num_acc
def predict(dataloader, model, args, logger):
y_pred = []
gen_pred_scores = []
y_true = []
model.eval()
with torch.no_grad():
for item in tqdm(dataloader, total=math.floor(len(dataloader.dataset.data_list) * 5 / dataloader.batch_size)):
input_ids, attention_mask, batch_gen_pred_scores, cla_labels = [x.to(args.device) for x in item]
output = model.forward(input_ids, attention_mask)
logits = output.logits
y_pred.append(torch.log_softmax(logits, dim=-1)[:, 1])
gen_pred_scores.append(batch_gen_pred_scores)
y_true.append(cla_labels)
y_pred = torch.cat(y_pred, dim=0).reshape(-1, 5)
gen_pred_scores = torch.cat(gen_pred_scores, dim=0).reshape(-1, 5)
y_true = torch.cat(y_true, dim=0).reshape(-1, 5)
assert len(y_pred) == len(gen_pred_scores)
assert len(y_pred) == len(y_true)
merge_num_acc = 0
pred_ids = []
for pred, gen_pred, true, data in zip(y_pred, gen_pred_scores, y_true, dataloader.dataset.data_list):
merge_num_acc += true[(gen_pred + pred).argmax().item()].item()
# pred_ids.append((true[(gen_pred + pred).argmax().item()].item(), (gen_pred + pred).argmax().item()))
# pred_ids
merge_num_acc = merge_num_acc / len(y_pred) * 100
logger.info('merge num acc : {:.2f}'.format(merge_num_acc))
return pred_ids
if __name__ == '__main__':
main()