-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendations.py
170 lines (138 loc) · 5.35 KB
/
recommendations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from math import sqrt
#dictionary of critics and ratings of a small set of titles
critics = {'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5,
'You, Me and Dupree': 2.5, 'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0,
'You, Me and Dupree': 3.5, 'The Night Listener': 3.0},
'Michael Phillips': {'Lady in the Water': 3.0, 'Snakes on a Plane': 1.0,
'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5, 'The Night Listener': 4.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0,
'You, Me and Dupree': 2.0, 'The Night Listener': 3.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Superman Returns': 5.0,
'You, Me and Dupree': 3.5, 'The Night Listener': 3.0},
'Toby': {'Snakes on a Plane': 3.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 1.0},
'Julie': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5,
'You, Me and Dupree': 2.5, 'The Night Listener': 3.0
}
}
#returns a distance based similarity score for person1 and person2
#uses euclidean distance
def sim_distance(prefs, person1, person2):
#get the list of shared items
si = {}
for item in prefs[person1]:
if item in prefs[person2]:
si[item] = 1
#if no ratings in common, return 0
if len(si)==0: return 0
#add up squares of differences
sum_of_squares = sum([pow(prefs[person1][item] - prefs[person2][item], 2)
for item in si])
return 1/(1+sqrt(sum_of_squares))
#returns the Pearson correlation coeff for p1 and p2
def sim_pearson(prefs, p1, p2):
#get the list of mutually rated items
si = {}
for item in prefs[p1]:
if item in prefs[p2]: si[item] = 1
#find the # of elements
n = len(si)
#if they have no ratings in common, return 0
if n == 0: return 0
#add up all the preferences
sum1 = sum([prefs[p1][item] for item in si])
sum2 = sum([prefs[p2][item] for item in si])
#sum up the squares
sum1Sq = sum([pow(prefs[p1][item], 2) for item in si])
sum2Sq = sum([pow(prefs[p2][item], 2) for item in si])
# sum up the products
pSum = sum([prefs[p1][item] * prefs[p2][item] for item in si])
#calc Pearson score
num = pSum - (sum1 * sum2 / n)
den = sqrt((sum1Sq - pow(sum1, 2)/n) * (sum2Sq - pow(sum2, 2)/ n))
if den == 0: return 0
r = num/den
return r
#returns the best matches for the person from the prefs dictionary
#number of results and similarity function are optional params
def topMatches(prefs, person, n= 5, similarity=sim_pearson):
scores = [(similarity(prefs, person, other), other) for other in prefs if other != person]
#sort the list so the highest scores appear at the top'
scores.sort()
scores.reverse()
return scores[0:n]
#gets recommendations for a person by using a weighted average of every other user's rankings
def getRecommendations(prefs, person, similarity=sim_pearson):
totals = {}
simSums = {}
for other in prefs:
#don't compare me to myself
if other==person: continue
sim = similarity(prefs, person, other)
#ignore scores of zero or lower
if sim <= 0: continue
for item in prefs[other]:
#only score movies I haven't seen yet
if item not in prefs[person] or prefs[person][item] == 0:
#similarity * score
totals.setdefault(item, 0)
totals[item]+=prefs[other][item]*sim
#sum of similarities
simSums.setdefault(item, 0)
simSums[item] += sim
#create the normalized list
rankings = [(total/simSums[item], item) for item, total in totals.items()]
#return the sorted list
rankings.sort()
rankings.reverse()
return rankings
def transformPrefs(prefs):
result = {}
for person in prefs:
for item in prefs[person]:
result.setdefault(item, {})
#flip item and person
result[item][person] = prefs[person][item]
return result
def calculateSimilarItems(prefs, n = 10):
#create a dictionary of items showing which other items they are most similar to
result = {}
#invert the preference matrix to be item-centric
itemPrefs = transformPrefs(prefs)
c = 0
for item in itemPrefs:
#status updates for large datasets
c += 1
if c % 100 == 0: print "%d / %d" % (c, len(itemPrefs))
#find the most similar items to this one
scores = topMatches(itemPrefs, item, n= n, similarity = sim_distance)
result[item] = scores
return result
def getRecommendedItems(prefs, itemMatch, user):
userRatings = prefs[user]
scores = {}
totalSim = {}
#loop over items rated by this user
for (item, rating) in userRatings.items():
#loop over itmems similar to this one
for (similarity, item2) in itemMatch[item]:
#ignore if this user has already rated this item
if item2 in userRatings: continue
#weighted sum of rating times similarity
scores.setdefault(item2, 0)
scores[item2] += similarity * rating
print 'title ', item2
print 'similarity ', similarity
print 'rating ' , rating
#sum of all similarities
totalSim.setdefault(item2, 0)
totalSim[item2] += similarity
#divide each total score by total weighting to get an average
rankings = [(score/totalSim[item], item) for item, score in scores.items()]
#return the rankings from highest to lowest
rankings.sort()
rankings.reverse()
return rankings