forked from intel/PerfSpect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
perf-postprocess.py
1215 lines (1081 loc) · 43.8 KB
/
perf-postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
###########################################################################################################
# Copyright (C) 2021-2023 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause
###########################################################################################################
import json
import numpy as np
import logging
import os
import pandas as pd
import re
import sys
from argparse import ArgumentParser
from enum import Enum
from simpleeval import simple_eval
from src.common import crash
from src import common
from src import perf_helpers
class Mode(Enum):
System = 1
Socket = 2
CPU = 3
# get the filenames for miscellaneous outputs
def get_extra_out_file(out_file, t):
dirname = os.path.dirname(out_file)
filename = os.path.basename(out_file)
t_file = ""
if t == "a":
text = "sys.average"
elif t == "r":
text = "sys.raw"
elif t == "s":
text = "socket"
elif t == "sa":
text = "socket.average"
elif t == "sr":
text = "socket.raw"
elif t == "c":
text = "cpu"
elif t == "ca":
text = "cpu.average"
elif t == "cr":
text = "cpu.raw"
elif t == "m":
text = "sys"
parts = os.path.splitext(filename)
if len(parts) == 1:
t_file = text + "." + filename
else:
t_file = parts[-2] + "." + text + ".csv"
return os.path.join(dirname, t_file)
def get_args(script_path):
parser = ArgumentParser(description="perf-postprocess: perf post process")
required_arg = parser.add_argument_group("required arguments")
required_arg.add_argument(
"-r",
"--rawfile",
type=str,
default="perfstat.csv",
help="Raw CSV output from perf-collect, default=perfstat.csv",
)
parser.add_argument(
"--version", "-V", help="display version information", action="store_true"
)
parser.add_argument(
"-o",
"--outfile",
type=str,
default=script_path + "/metric_out.csv",
help="perf stat outputs in csv format, default=metric_out.csv",
)
parser.add_argument(
"-v",
"--verbose",
help="include debugging information, keeps all intermediate csv files",
action="store_true",
)
parser.add_argument(
"-f",
"--fail-postprocessing",
help="gives exit code 1 when postprocessing detects missing event or zero division errors",
action="store_true",
)
parser.add_argument(
"--rawevents", help="save raw events in .csv format", action="store_true"
)
parser.add_argument(
"--pertxn",
type=int,
help="Generate per-transaction metrics using the provided transactions/sec.",
)
args = parser.parse_args()
# if args.version, print version then exit
if args.version:
print(perf_helpers.get_tool_version())
sys.exit()
# check number of transactions > 1
if args.pertxn is not None:
if args.pertxn < 1:
crash("Number of transactions cannot be < 1" % args.outfile)
else:
args.outfile = args.outfile.replace(".csv", "_txn.csv")
# check rawfile argument is given
if args.rawfile is None:
crash("Missing raw file, please provide raw csv generated using perf-collect")
# check rawfile argument exists
if args.rawfile and not os.path.isfile(args.rawfile):
crash("perf raw data file not found, please provide valid raw file")
# check output file is writable
if not perf_helpers.check_file_writeable(args.outfile):
crash("Output file %s not writeable " % args.outfile)
return args
# fix c6-residency data lines
# for system: multiply value by number of HyperThreads
# for socket or cpu: add rows for each 2nd HyperThread with same values as 1st CPU
def get_fixed_c6_residency_fields(perf_data_lines, perf_mode):
# handle special case events: c6-residency
# if hyperthreading is disabled, no fixing is required
if meta_data["constants"]["HYPERTHREADING_ON"] == 0:
return perf_data_lines
new_perf_data_lines = []
if meta_data["constants"]["CONST_THREAD_COUNT"] == 2:
for fields in perf_data_lines:
if perf_mode == Mode.System and fields[3] == "cstate_core/c6-residency/":
# since "cstate_core/c6-residency/" is collected for only one cpu per core
# we double the value for the system wide collection (assign same value to the 2nd cpu)
try:
fields[1] = int(fields[1]) * 2 # fields[1] -> event value
except ValueError:
# value can be <not supported> or <not counted>
logging.warning(
"Failed to convert cstate_core/c6-residency/ metric value: "
+ str(fields[1])
+ " to integer. Skipping"
)
pass
new_perf_data_lines.append(fields)
elif fields[4] == "cstate_core/c6-residency/":
new_fields = fields.copy()
cpuID = int(fields[1].replace("CPU", ""))
HT_cpuID = cpuID + int(
meta_data["constants"]["CONST_THREAD_COUNT"]
* meta_data["constants"]["CORES_PER_SOCKET"]
)
new_fields[1] = "CPU" + str(HT_cpuID)
new_perf_data_lines.append(fields)
new_perf_data_lines.append(new_fields)
else:
new_perf_data_lines.append(fields)
return new_perf_data_lines
# get metadata lines and perf events' lines in three separate lists
def get_all_data_lines(input_file_path):
with open(input_file_path, "r") as infile:
lines = infile.readlines()
# input file has three headers:
# 1- ### META DATA ###,
# 2- ### PERF EVENTS ###,
# 3- ### PERF DATA ###,
meta_data_lines = []
perf_events_lines = []
perf_data_lines = []
meta_data_started = False
perf_events_started = False
perf_data_started = False
for idx, line in enumerate(lines):
if line.strip() == "": # skip empty lines
continue
# check first line is META Data header
elif (idx == 0) and ("### META DATA ###" not in line):
crash(
"The perf raw file doesn't contain metadata, please re-collect perf raw data"
)
elif "### META DATA ###" in line:
meta_data_started = True
perf_events_started = False
perf_data_started = False
elif "### PERF EVENTS ###" in line:
meta_data_started = False
perf_events_started = True
perf_data_started = False
elif "### PERF DATA ###" in line:
meta_data_started = False
perf_events_started = False
perf_data_started = True
elif meta_data_started:
meta_data_lines.append(line.strip())
elif perf_events_started:
perf_events_lines.append(line.strip())
elif perf_data_started:
if line.startswith("# started on"):
# this line is special, it is under "PERF DATA" (printed by perf), but it is treatesd as metadata
meta_data_lines.append(line.strip())
else:
fields = line.split(",")
perf_data_lines.append(fields)
if len(perf_data_lines) == 0:
crash(
"perfstat.csv contains no perf event data, try collecting for a longer time"
)
return meta_data_lines, perf_events_lines, perf_data_lines
# get_metadata
def get_metadata_as_dict(meta_data_lines, txns=None):
meta_data = {}
meta_data["constants"] = {}
meta_data["metadata"] = {}
if txns is not None:
meta_data["constants"]["TXN"] = txns
for line in meta_data_lines:
if line.startswith("SYSTEM_TSC_FREQ"):
meta_data["constants"]["SYSTEM_TSC_FREQ"] = (
float(line.split(",")[1]) * 1000000
)
elif line.startswith("CORES_PER_SOCKET"):
meta_data["constants"]["CORES_PER_SOCKET"] = int(line.split(",")[1])
elif line.startswith("HYPERTHREADING_ON"):
meta_data["constants"]["HYPERTHREADING_ON"] = int(
line.split(",")[1] == "True"
)
meta_data["constants"]["CONST_THREAD_COUNT"] = (
int(line.split(",")[1] == "True") + 1
)
elif line.startswith("SOCKET_COUNT"):
meta_data["constants"]["SOCKET_COUNT"] = int(line.split(",")[1])
elif line.startswith("CHAS_PER_SOCKET") or line.startswith("CBOX"):
meta_data["constants"]["CHAS_PER_SOCKET"] = int(line.split(",")[1])
elif line.startswith("Architecture"):
meta_data["constants"]["CONST_ARCH"] = str(line.split(",")[1])
elif line.startswith("Event grouping"):
meta_data["EVENT_GROUPING"] = (
True if (str(line.split(",")[1]) == "enabled") else False
)
elif line.startswith("cgroups"):
if line.startswith("cgroups=disabled"):
meta_data["CGROUPS"] = "disabled"
continue
# Get cgroup status and cgroup_id to container_name mapping
meta_data["CGROUPS"] = "enabled"
meta_data["CGROUP_HASH"] = dict(
item.split("=")
for item in line.split("cgroups=enabled,")[1].rstrip(",\n").split(",")
)
docker_HASH = []
docker_HASH = list(meta_data["CGROUP_HASH"].values())
elif (
line.startswith("cpusets")
and "CGROUPS" in meta_data
and meta_data["CGROUPS"] == "enabled"
):
line = line.replace("cpusets,", "")
docker_SETS = []
docker_SETS = line.split(",")
docker_SETS = docker_SETS[:-1]
# here length of docker_HASH should be exactly len(docker_SETS)
assert len(docker_HASH) == len(docker_SETS)
meta_data["CPUSETS"] = {}
for i, docker_SET in enumerate(docker_SETS):
if "-" in docker_SET: # range of cpus
num_of_cpus = (
int(docker_SET.split("-")[1])
- int(docker_SET.split("-")[0])
+ 1
)
else: # either one cpu, or a list of cpus separated by + sign
num_of_cpus = len(docker_SET.split("+"))
meta_data["CPUSETS"][docker_HASH[i]] = num_of_cpus
elif line.startswith("Percpu mode"):
meta_data["PERCPU_MODE"] = (
True if (str(line.split(",")[1]) == "enabled") else False
)
elif line.startswith("Persocket mode"):
meta_data["PERSOCKET_MODE"] = (
True if (str(line.split(",")[1]) == "enabled") else False
)
elif line.startswith("# started on"):
meta_data["TIME_ZONE"] = str(line.split("# started on")[1])
elif line.startswith("Socket"):
if "SOCKET_CORES" not in meta_data:
meta_data["SOCKET_CORES"] = []
CPUs = ((line.split("\n")[0]).split(",")[1]).split(";")[:-1]
meta_data["SOCKET_CORES"].append(CPUs)
elif line.startswith("PSI"):
meta_data["PSI"] = json.loads(line.split("PSI,")[1])
for line in meta_data_lines:
for info in [
"SYSTEM_TSC_FREQ (MHz)",
"CORES_PER_SOCKET",
"SOCKET_COUNT",
"HYPERTHREADING_ON",
"IMC count",
"CHAS_PER_SOCKET",
"UPI count",
"Architecture",
"Model",
"kernel version",
"PerfSpect version",
]:
if info in line:
meta_data["metadata"][info] = line.split(",", 1)[1]
if meta_data["metadata"][info][-1] == ",":
meta_data["metadata"][info] = meta_data["metadata"][info][:-1]
return meta_data
def set_CONST_TSC(meta_data, perf_mode, num_cpus=0):
if perf_mode == Mode.System:
if meta_data["CGROUPS"] == "enabled" and num_cpus > 0:
meta_data["constants"]["TSC"] = (
meta_data["constants"]["SYSTEM_TSC_FREQ"] * num_cpus
)
else:
meta_data["constants"]["TSC"] = (
meta_data["constants"]["SYSTEM_TSC_FREQ"]
* meta_data["constants"]["CORES_PER_SOCKET"]
* meta_data["constants"]["CONST_THREAD_COUNT"]
* meta_data["constants"]["SOCKET_COUNT"]
)
elif perf_mode == Mode.Socket:
meta_data["constants"]["TSC"] = (
meta_data["constants"]["SYSTEM_TSC_FREQ"]
* meta_data["constants"]["CORES_PER_SOCKET"]
* meta_data["constants"]["CONST_THREAD_COUNT"]
)
elif perf_mode == Mode.CPU:
meta_data["constants"]["TSC"] = meta_data["constants"]["SYSTEM_TSC_FREQ"]
return
def get_event_name(event_line):
event_name = event_line
if "name=" in event_name:
matches = re.findall(r"\.*name=\'(.*?)\'.*", event_name)
assert len(matches) > 0
event_name = matches[0]
if event_name.endswith(":c"): # core event
event_name = event_name.split(":c")[0]
if event_name.endswith(":u"): # uncore event
event_name = event_name.split(":u")[0]
# clean up , or ;
event_name = event_name.replace(",", "").replace(";", "")
return event_name
def get_event_groups(event_lines):
groups = {}
group_indx = 0
current_group = []
for event in event_lines:
if ";" in event: # end of group
current_group.append(get_event_name(event))
groups["group_" + str(group_indx)] = current_group
group_indx += 1
current_group = []
else:
current_group.append(get_event_name(event))
return groups
def get_metric_file_name(microarchitecture):
metric_file = ""
if microarchitecture == "broadwell":
metric_file = "metric_bdx.json"
elif microarchitecture == "skylake" or microarchitecture == "cascadelake":
metric_file = "metric_skx_clx.json"
elif microarchitecture == "icelake":
metric_file = "metric_icx.json"
elif microarchitecture == "sapphirerapids" or microarchitecture == "emeraldrapids":
metric_file = "metric_spr_emr.json"
elif microarchitecture == "sierraforest":
metric_file = "metric_srf.json"
else:
crash("Suitable metric file not found")
# Convert path of json file to relative path if being packaged by pyInstaller into a binary
if getattr(sys, "frozen", False):
basepath = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
metric_file = os.path.join(basepath, metric_file)
elif __file__:
metric_file = script_path + "/events/" + metric_file
else:
crash("Unknown application type")
return metric_file
def validate_file(fname):
if not os.access(fname, os.R_OK):
crash(str(fname) + " not accessible")
def get_metrics_formula(architecture, txns=None):
# get the metric file name based on architecture
metric_file = get_metric_file_name(architecture)
validate_file(metric_file)
with open(metric_file, "r") as f_metric:
try:
metrics = json.load(f_metric)
for metric in metrics:
if txns is not None:
if "name-txn" in metric:
metric["name"] = metric["name-txn"]
if "expression-txn" in metric:
metric["expression"] = metric["expression-txn"]
metric["events"] = re.findall(r"\[(.*?)\]", metric["expression"])
return metrics
except json.decoder.JSONDecodeError:
crash("Invalid JSON, please provide a valid JSON as metrics file")
return
def get_socket_number(sockets_dict, CPU):
CPU_index = CPU.replace("CPU", "")
for s in range(len(sockets_dict)):
if CPU_index in sockets_dict[s]:
return s
return
def extract_dataframe(perf_data_lines, meta_data, perf_mode):
logging.info("Formatting event data")
# parse event data into dataframe and set header names
perf_data_df = pd.DataFrame(perf_data_lines)
if "CGROUPS" in meta_data and meta_data["CGROUPS"] == "enabled":
# 1.001044566,6261968509,,L1D.REPLACEMENT,/system.slice/docker-826c1c9de0bde13b0c3de7c4d96b38710cfb67c2911f30622508905ece7e0a16.scope,6789274819,5.39,,
assert len(perf_data_df.columns) >= 7
columns = [
"ts",
"value",
"col0",
"metric",
"cgroup",
"perf_group_id",
"percentage",
]
# add dummy col names for remaining columns
for col in range(7, len(perf_data_df.columns)):
columns.append("col" + str(col))
perf_data_df.columns = columns
elif perf_mode == Mode.System:
# Ubuntu 16.04 returns 6 columns, later Ubuntu's and other OS's return 8 columns
assert len(perf_data_df.columns) >= 6
columns = ["ts", "value", "col0", "metric", "perf_group_id", "percentage"]
# add dummy col names for remaining columns
for col in range(6, len(perf_data_df.columns)):
columns.append("col" + str(col))
perf_data_df.columns = columns
elif perf_mode == Mode.CPU or perf_mode == Mode.Socket:
assert len(perf_data_df.columns) >= 7
columns = [
"ts",
"cpu",
"value",
"col0",
"metric",
"perf_group_id",
"percentage",
]
# add dummy col names for remaining columns
for col in range(7, len(perf_data_df.columns)):
columns.append("col" + str(col))
perf_data_df.columns = columns
# Add socket column
perf_data_df["socket"] = perf_data_df.apply(
lambda x: "S" + str(get_socket_number(meta_data["SOCKET_CORES"], x["cpu"])),
axis=1,
)
# fix metric name X.1, X.2, etc -> just X
perf_data_df["metric"] = perf_data_df.apply(
lambda x: ".".join(x["metric"].split(".")[:-1])
if len(re.findall(r"^[0-9]*$", x["metric"].split(".")[-1])) > 0
else x["metric"],
axis=1,
)
# set data frame types
perf_data_df["value"] = pd.to_numeric(
perf_data_df["value"], errors="coerce"
).fillna(0)
return perf_data_df
# get group data frame after grouping
def get_group_df_from_full_frame(
time_slice_df, start_index, end_of_group_index, perf_mode
):
g_df = time_slice_df[start_index:end_of_group_index]
if perf_mode == Mode.System:
g_df = g_df[["metric", "value"]].groupby("metric")["value"].sum().to_frame()
elif perf_mode == Mode.Socket:
if "socket" in g_df:
g_df = (
g_df[["metric", "socket", "value"]]
.groupby(["metric", "socket"])["value"]
.sum()
.to_frame()
)
else:
crash("No socket information found, exiting...")
elif perf_mode == Mode.CPU: # check dataframe has cpu column, otherwise raise error
if "cpu" in g_df:
g_df = (
g_df[["metric", "cpu", "value"]]
.groupby(["metric", "cpu"])["value"]
.sum()
.to_frame()
)
else:
crash("No CPU information found, exiting...")
return g_df
def generate_metrics_time_series(time_series_df, perf_mode, out_file_path):
time_series_df_T = time_series_df.T
time_series_df_T.index.name = "time"
metric_file_name = ""
if perf_mode == Mode.System:
metric_file_name = get_extra_out_file(out_file_path, "m")
if perf_mode == Mode.Socket:
metric_file_name = get_extra_out_file(out_file_path, "s")
if perf_mode == Mode.CPU:
metric_file_name = get_extra_out_file(out_file_path, "c")
# generate metrics with time indexes
time_series_df_T.to_csv(metric_file_name)
return
def generate_metrics_averages(
time_series_df: pd.DataFrame, perf_mode: Mode, out_file_path: str
) -> None:
average_metric_file_name = ""
if perf_mode == Mode.System:
average_metric_file_name = get_extra_out_file(out_file_path, "a")
if perf_mode == Mode.Socket:
average_metric_file_name = get_extra_out_file(out_file_path, "sa")
if perf_mode == Mode.CPU:
average_metric_file_name = get_extra_out_file(out_file_path, "ca")
time_series_df.index.name = "metrics"
avgcol = time_series_df.mean(numeric_only=True, axis=1).to_frame().reset_index()
p95col = time_series_df.quantile(q=0.95, axis=1).to_frame().reset_index()
mincol = time_series_df.min(axis=1).to_frame().reset_index()
maxcol = time_series_df.max(axis=1).to_frame().reset_index()
# define columns headers
avgcol.columns = ["metrics", "avg"]
p95col.columns = ["metrics", "p95"]
mincol.columns = ["metrics", "min"]
maxcol.columns = ["metrics", "max"]
# merge columns
time_series_df = time_series_df.merge(avgcol, on="metrics", how="outer")
time_series_df = time_series_df.merge(p95col, on="metrics", how="outer")
time_series_df = time_series_df.merge(mincol, on="metrics", how="outer")
time_series_df = time_series_df.merge(maxcol, on="metrics", how="outer")
time_series_df[["metrics", "avg", "p95", "min", "max"]].to_csv(
average_metric_file_name, index=False
)
return
def row(df, name):
if name in df.index:
timeseries = df.loc[[name]].to_dict("split")
timeseries["columns"] = map(lambda x: round(float(x), 1), timeseries["columns"])
return json.dumps(list(zip(timeseries["columns"], timeseries["data"][0])))
else:
return "[]"
def write_html(time_series_df, perf_mode, out_file_path, meta_data, pertxn=None):
html_file = "base.html"
if getattr(sys, "frozen", False):
basepath = getattr(sys, "_MEIPASS", os.path.dirname(os.path.abspath(__file__)))
html_file = os.path.join(basepath, html_file)
elif __file__:
html_file = script_path + "/src/" + html_file
else:
crash("Unknown application type")
html = ""
with open(html_file, "r", encoding="utf-8") as f_html:
html = f_html.read()
# only show TMA if system-wide mode
if perf_mode == Mode.System:
html = html.replace("TRANSACTIONS", str(pertxn is not None).lower())
time_series_df.index.name = "metrics"
for metric in [
["CPUUTIL", "metric_CPU utilization %"],
["CPIDATA", "metric_CPI"],
["CPUFREQ", "metric_CPU operating frequency (in GHz)"],
["CPIDATA", "metric_CPI"],
["PKGPOWER", "metric_package power (watts)"],
["DRAMPOWER", "metric_DRAM power (watts)"],
["L1DATA", "metric_L1D MPI (includes data+rfo w/ prefetches)"],
["L2DATA", "metric_L2 MPI (includes code+data+rfo w/ prefetches)"],
["LLCDATA", "metric_LLC data read MPI (demand+prefetch)"],
["READDATA", "metric_memory bandwidth read (MB/sec)"],
["WRITEDATA", "metric_memory bandwidth write (MB/sec)"],
["TOTALDATA", "metric_memory bandwidth total (MB/sec)"],
["REMOTENUMA", "metric_NUMA %_Reads addressed to remote DRAM"],
]:
new_metric = metric[1]
if pertxn is not None:
if "_CPI" in new_metric:
new_metric = new_metric.replace("_CPI", "_cycles per txn")
if " MPI" in new_metric:
new_metric = new_metric.replace(" MPI", " misses per txn")
html = html.replace(metric[0], row(time_series_df, new_metric))
avg = time_series_df.mean(numeric_only=True, axis=1).to_frame()
html = html.replace(
"ALLMETRICS", json.dumps(avg.reset_index().to_dict("records"))
)
html = html.replace("METADATA", json.dumps(list(meta_data["metadata"].items())))
for number in [
["FRONTEND", "metric_TMA_Frontend_Bound(%)"],
["BACKEND", "metric_TMA_Backend_Bound(%)"],
["COREDATA", "metric_TMA_..Core_Bound(%)"],
["MEMORY", "metric_TMA_..Memory_Bound(%)"],
["BADSPECULATION", "metric_TMA_Bad_Speculation(%)"],
["RETIRING", "metric_TMA_Retiring(%)"],
["PSI_CPU", "cpu stall %"],
["PSI_MEM", "memory stall %"],
["PSI_IO", "io stall %"],
]:
try:
html = html.replace(number[0], str(avg.loc[number[1], 0]))
except Exception:
html = html.replace(number[0], "0")
with open(
os.path.splitext(out_file_path)[0] + ".html", "w", encoding="utf-8"
) as file:
file.write(html)
def log_skip_metric(metric, instance, msg):
logging.warning(
msg
+ ': metric "'
+ metric["name"]
+ '" expression "'
+ metric["expression"]
+ '" values "'
+ instance
+ '"'
)
# group_start_end_index_dict is both an input and output argument
# if empty, the start and end indexes for each geroup will be added
# if not, the start and end indexes for each group will be read from it
def get_groups_to_dataframes(
time_slice_df, group_to_event, group_start_end_index_dict, perf_mode
):
group_to_df = {}
if len(group_start_end_index_dict) == 0:
current_group_indx = 0
group_name = "group_" + str(current_group_indx)
event_list = group_to_event[group_name]
start_index = 0
end_index = 0
for i in time_slice_df.index:
row = time_slice_df.loc[i]
if row["metric"] in event_list:
end_index += 1
else:
group_to_df[group_name] = get_group_df_from_full_frame(
time_slice_df, start_index, end_index, perf_mode
)
group_start_end_index_dict[group_name] = (start_index, end_index)
start_index = end_index
current_group_indx += 1
try:
group_name = "group_" + str(current_group_indx)
event_list = group_to_event[group_name]
except KeyError:
crash(
"could not find "
+ str(row)
+ " in event grouping: "
+ str(group_to_event)
)
end_index += 1
group_to_df[group_name] = get_group_df_from_full_frame(
time_slice_df, start_index, time_slice_df.shape[0], perf_mode
)
group_start_end_index_dict[group_name] = (start_index, time_slice_df.shape[0])
else:
for group_name in group_start_end_index_dict:
start_index = group_start_end_index_dict[group_name][0]
end_index = group_start_end_index_dict[group_name][1]
group_to_df[group_name] = get_group_df_from_full_frame(
time_slice_df, start_index, end_index, perf_mode
)
return group_to_df
def substitute_constants(expression, constants):
returned_expression = expression
for constant in constants:
returned_expression = returned_expression.replace(
"[" + constant + "]", str(constants[constant])
)
return returned_expression
# Find the best group to use to evalaute a set of events
# The best group is the one that has the majority of the events
# For example, to evaluate events [ev1, ev2, ev3, ev4]
# If group 1 has [ev1,ev2] and group 2 has [ev1, ev2, ev3]
# Then group 2 is better than group 1
def find_best_group(remaining_events, group_to_event):
diff_size = sys.maxsize
best_group = None
for group, events in group_to_event.items():
ds = len(set(remaining_events) - set(events))
if ds < diff_size and ds < len(set(remaining_events)):
diff_size = ds
best_group = group
if diff_size == 0:
break
return best_group
# substitute the value of an event in the given expression
# "exp_to_evaluate" is modified by the function and added to "evaluated_expressions"
# detected errors are added to "errors"
# in arguments: verbose, best_group, group_to_df, event,exp_to_evaluate,
# out arguments: errors, evaluated_expressions,
def substitute_event_in_expression(
verbose,
best_group,
group_to_df,
event,
exp_to_evaluate,
errors,
evaluated_expressions,
):
if best_group in group_to_df:
g_df = group_to_df[best_group]
event_df = g_df.loc[event]
if event_df.shape == (1,): # system wide
if "sys" not in evaluated_expressions:
evaluated_expressions["sys"] = exp_to_evaluate.replace(
"[" + event + "]", str(event_df[0])
)
else:
evaluated_expressions["sys"] = evaluated_expressions["sys"].replace(
"[" + event + "]", str(event_df[0])
)
else:
for index in event_df.index:
value = event_df["value"][index]
if index not in evaluated_expressions:
evaluated_expressions[index] = exp_to_evaluate
evaluated_expressions[index] = evaluated_expressions[index].replace(
"[" + event + "]",
str(value),
)
else: # group was not counted
if verbose and best_group not in errors["NOT COUNTED GROUPS"]:
errors["NOT COUNTED GROUPS"].add(best_group)
logging.warning("Event group:" + best_group + "Not counted")
return
# evaluate the expression of a given metric
# returns the metric name (and subname) and the evaluation result
# detected errors will be appended to "errors"
def evaluate_metric_expression(
expressions_to_evaluate, verbose, metric, instance, errors
):
if (
"[" in expressions_to_evaluate[instance]
or "]" in expressions_to_evaluate[instance]
):
if verbose and metric["name"] not in errors["MISSING DATA"]:
errors["MISSING DATA"].add(metric["name"])
log_skip_metric(metric, expressions_to_evaluate[instance], "MISSING DATA")
return None
try:
result = "{:.8f}".format(
simple_eval(
expressions_to_evaluate[instance],
functions={"min": min, "max": max},
)
)
except ZeroDivisionError:
if verbose and metric["name"] not in errors["ZERO DIVISION"]:
errors["ZERO DIVISION"].add(metric["name"])
log_skip_metric(metric, expressions_to_evaluate[instance], "ZERO DIVISION")
result = 0
sub_txt = "" if instance == "sys" else "." + str(instance)
return metric["name"] + sub_txt, float(result)
# evaluate all metrics from dataframes in group_to_df
# for each metric, we find the best group to use to evaluate the metric's expression from
def evaluate_metrics(verbose, metrics, metadata, group_to_event, group_to_df, errors):
metrics_results = {}
best_groups_for_events = {}
for metric in metrics:
non_constant_events = []
exp_to_evaluate = substitute_constants(
metric["expression"], metadata["constants"]
)
for event in metric["events"]:
if event.upper() in metadata["constants"]:
exp_to_evaluate = substitute_constants(
exp_to_evaluate,
{event.upper(): metadata["constants"][event.upper()]},
)
else:
non_constant_events.append(event)
remaining_events_to_find = list(non_constant_events)
evaluated_expressions = {}
passes = 0
while len(remaining_events_to_find) > 0:
if (
passes == 1
and verbose
and metric["name"] not in errors["MULTIPLE GROUPS"]
):
errors["MULTIPLE GROUPS"].add(metric["name"])
logging.warning(
f'MULTIPLE GROUPS: metric "{metric["name"]}", events "{set(non_constant_events)}"'
)
passes += 1
remaining_events_txt = str(remaining_events_to_find)
if remaining_events_txt in best_groups_for_events:
best_group = best_groups_for_events[remaining_events_txt]
else:
best_group = find_best_group(remaining_events_to_find, group_to_event)
best_groups_for_events[remaining_events_txt] = best_group
if best_group is None:
break
for event in remaining_events_to_find[:]:
if event in group_to_event[best_group]:
remaining_events_to_find.remove(event)
substitute_event_in_expression(
verbose,
best_group,
group_to_df,
event,
exp_to_evaluate,
errors,
evaluated_expressions,
)
if len(remaining_events_to_find) == 0:
for instance in evaluated_expressions:
metric_result = evaluate_metric_expression(
evaluated_expressions, verbose, metric, instance, errors
)
if metric_result is not None:
metrics_results[metric_result[0]] = metric_result[1]
else:
if verbose and metric["name"] not in errors["MISSING EVENTS"]:
logging.warning(
'MISSING EVENTS: metric "'
+ metric["name"]
+ '" events "'
+ str(remaining_events_to_find)
+ '"'
)
errors["MISSING EVENTS"].add(metric["name"])
continue
return metrics_results
def generate_metrics(
perf_data_df,
out_file_path,
group_to_event,
metadata,
metrics,
perf_mode,
pertxn=None,
verbose=False,
fail_postprocessing=False,
):
# filter out uncore metrics if in cpu or socket mode
filtered_metrics = []
for m in metrics:
if perf_mode == Mode.CPU or perf_mode == Mode.Socket:
if any(
[
e.startswith("power/")
or e.startswith("cstate_")
or e.startswith("UNC_")
for e in m["events"]
]
):
continue
filtered_metrics.append(m)
time_slice_groups = perf_data_df.groupby("ts", sort=False)
time_metrics_result = {}
errors = {
"MISSING DATA": set(),
"ZERO DIVISION": set(),
"MISSING EVENTS": set(),
"MULTIPLE GROUPS": set(),
"NOT COUNTED GROUPS": set(),
}
prev_time_slice = 0
logging.info(
"processing "
+ str(time_slice_groups.ngroups)
+ " samples in "
+ (
"System"
if perf_mode == Mode.System
else "CPU"
if perf_mode == Mode.CPU
else "Socket"
)
+ " mode"
)
group_start_end_index_dict = {}
for time_slice, item in time_slice_groups:
time_slice_float = float(time_slice)
if time_slice_float - prev_time_slice < 4.5:
logging.warning("throwing out last sample because it was too short")
if time_slice_groups.ngroups == 1:
crash("no remaining samples")
continue
time_slice_df = time_slice_groups.get_group(time_slice).copy()
# normalize by difference between current time slice and previous time slice
# this ensures that all our events are per-second, even if perf is collecting
# over a longer time slice
time_slice_df["value"] = time_slice_df["value"] / (
time_slice_float - prev_time_slice
)
prev_time_slice = time_slice_float
# get dictionary with group_ids as keys and group dataframes as values
# We save the start and end indexes for each group in the first iteration and use it in the following iterations
# group_start_end_index_dict is an out argument in the first iteration, and an input argument for following iterations
group_to_df = get_groups_to_dataframes(
time_slice_df, group_to_event, group_start_end_index_dict, perf_mode
)
time_metrics_result[time_slice] = evaluate_metrics(
verbose, filtered_metrics, metadata, group_to_event, group_to_df, errors
)
time_series_df = pd.DataFrame(time_metrics_result).reindex(
index=list(time_metrics_result[list(time_metrics_result.keys())[0]].keys())
)