-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·232 lines (193 loc) · 10.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
import argparse
import random
import datetime
import matplotlib as mpl
mpl.use('Agg')
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data.distributed
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, ToTensor, Normalize
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.utils.data.distributed
#import apex.amp as amp
from torch.cuda.amp import autocast as autocast
from model.model import *
from engine.engine import *
from dataset.data_loader import *
from utils.losses import *
from utils.parsing_metrics import *
from utils.utils import *
from utils.checkpoint import load_pretrain, load_resume
from utils.logger import setup_logger
def get_args():
parser = argparse.ArgumentParser(description='Dataloader test')
parser.add_argument('--gpu', default='2', help='gpu id')
parser.add_argument('--ngpu', default=2, type=int, help='gpu num')
parser.add_argument('--workers', default=4, type=int, help='num workers for data loading')
parser.add_argument('--seed', default=0, type=int, help='random seed')
parser.add_argument('--clip_model', default='ViT-B/16', type=str, help='clip model RN50 RN101 ViT-B/32')
parser.add_argument('--nb_epoch', default=32, type=int, help='training epoch')
parser.add_argument('--lr', default=0.000025, type=float, help='batch size 16 learning rate')
parser.add_argument('--power', default=0.1, type=float, help='lr poly power')
parser.add_argument('--steps', default=[15, 28], type=list, help='in which step lr decay by power')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--size', default=416, type=int, help='image size')
parser.add_argument('--dataset', default='refcoco', type=str,
help='refcoco/refcoco+/refcocog/grefcoco')
parser.add_argument('--num_query', default=16, type=int, help='the number of query')
parser.add_argument('--w_seg', default=0.1, type=float, help='weight of the seg loss')
parser.add_argument('--w_coord', default=5, type=float, help='weight of the reg loss')
parser.add_argument('--tunelang', dest='tunelang', default=True, action='store_true', help='if finetune language model')
parser.add_argument('--anchor_imsize', default=416, type=int,
help='scale used to calculate anchors defined in model cfg file')
parser.add_argument('--data_root', type=str, default='./ln_data',
help='path to ReferIt splits data folder')
parser.add_argument('--split_root', type=str, default='./data',
help='location of pre-parsed dataset info')
parser.add_argument('--time', default=15, type=int,
help='maximum time steps (lang length) per batch')
parser.add_argument('--log_dir', type=str, default='./logs',
help='path to ReferIt splits data folder')
parser.add_argument('--fusion_dim', default=768, type=int,
help='fusion module embedding dimensions')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrain', default='', type=str, metavar='PATH',
help='pretrain support load state_dict that are not identical, while have no loss saved as resume')
parser.add_argument('--print_freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 1e3)')
parser.add_argument('--savename', default='default', type=str, help='Name head for saved model')
parser.add_argument('--seg_thresh', default=0.35, type=float, help='seg score above this value means foreground')
parser.add_argument('--seg_out_stride', default=2, type=int, help='the seg out stride')
parser.add_argument('--best_iou', default=-float('Inf'), type=int, help='the best accu')
global args, anchors_full, writer, logger
args = parser.parse_args()
args.gsize = 32
args.date = datetime.datetime.now().strftime('%Y%m%d')
if args.savename=='default':
args.savename = 'model_v1_%s_batch%d_%s'%(args.dataset, args.batch_size, args.date)
os.makedirs(args.log_dir, exist_ok=True)
args.lr = args.lr * (args.batch_size * args.ngpu // 16)
print('----------------------------------------------------------------------')
print(sys.argv[0])
print(args)
print('----------------------------------------------------------------------')
return args
def main(args):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12367'
if(torch.cuda.is_available()):
n_gpus = torch.cuda.device_count()
print("Running DDP with {} GPUs".format(n_gpus))
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, args,))
else:
print("Please use GPU for training")
def run(rank, n_gpus, args):
dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.cuda.set_device(rank)
## fix seed
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed+1)
torch.manual_seed(args.seed+2)
torch.cuda.manual_seed_all(args.seed+3)
## save logs
logger = setup_logger(output=os.path.join(args.log_dir, args.savename), distributed_rank=rank, color=False, name="model-v1")
logger.info(str(sys.argv))
logger.info(str(args))
input_transform = Compose([
ToTensor(),
Normalize(
mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711]
)
])
val_dataset = ReferDataset(data_root=args.data_root,
dataset=args.dataset,
split_root=args.split_root,
split='val',
imsize = args.size,
transform=input_transform,
max_query_len=args.time)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
pin_memory=True, drop_last=True, num_workers=args.workers)
if args.dataset == 'refcocog_u':
test_dataset = ReferDataset(data_root=args.data_root,
dataset=args.dataset,
split_root=args.split_root,
split='test',
imsize = args.size,
transform=input_transform,
max_query_len=args.time)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False,
pin_memory=True, drop_last=True, num_workers=args.workers)
elif args.dataset == 'refcocog_g':
pass
else:
testA_dataset = ReferDataset(data_root=args.data_root,
dataset=args.dataset,
split_root=args.split_root,
split='testA',
imsize = args.size,
transform=input_transform,
max_query_len=args.time)
testB_dataset = ReferDataset(data_root=args.data_root,
dataset=args.dataset,
split_root=args.split_root,
split='testB',
imsize = args.size,
transform=input_transform,
max_query_len=args.time)
testA_loader = DataLoader(testA_dataset, batch_size=1, shuffle=False,
pin_memory=True, drop_last=True, num_workers=args.workers)
testB_loader = DataLoader(testB_dataset, batch_size=1, shuffle=False,
pin_memory=True, drop_last=True, num_workers=args.workers)
## Model
model = Model(clip_model=args.clip_model, tunelang=args.tunelang, num_query=args.num_query, fusion_dim=args.fusion_dim).cuda(rank)
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
model_without_ddp = model.module
args.start_epoch = 0
if args.pretrain and os.path.isfile(args.pretrain):
model=load_pretrain(model, args, logger, rank)
model.to(rank)
visu_param = [param for name, param in model_without_ddp.named_parameters() if 'visumodel' in name]
text_param = [param for name, param in model_without_ddp.named_parameters() if 'textmodel' in name]
rest_param = [param for name, param in model_without_ddp.named_parameters() if 'textmodel' not in name and 'visumodel' not in name]
## optimizer; adam default
if args.tunelang:
optimizer = torch.optim.Adam([{'params': rest_param, 'lr': args.lr},
{'params': visu_param, 'lr': args.lr / 10.},
{'params': text_param, 'lr': args.lr / 10.}])
else:
optimizer = torch.optim.Adam([{'params': rest_param},
{'params': visu_param, 'lr': args.lr / 10.}], lr=args.lr)
best_miou_seg = -float('Inf')
if args.resume:
model = load_resume(model, optimizer, args, logger, rank)
model.to(rank)
best_miou_seg = args.best_iou
print(best_miou_seg)
if args.dataset == 'refcocog_u':
print('\nTest testing:')
miou_seg, prec = validate_epoch(args, test_loader, model, logger, 'test')
elif args.dataset == 'refcocog_g':
pass
else:
print('\nTestA testing:')
miou_seg, prec = validate_epoch(args, testA_loader, model, logger, 'testA')
print('\nTestB testing:')
miou_seg, prec = validate_epoch(args, testB_loader, model, logger, 'testB')
miou_seg, prec = validate_epoch(args, val_loader, model, logger, 'val')
if __name__ == "__main__":
args = get_args()
main(args)