forked from newsWhisperer/winterIsComing
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmanually.py
150 lines (123 loc) · 4.61 KB
/
manually.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import io
import os
import sys
from pathlib import Path
import os.path
import aiohttp
import asyncio
import requests
from urllib.parse import urlparse
import json
import time
import smtplib
import random
import hashlib
import datetime
from dateutil import parser
import re
from bs4 import BeautifulSoup
from deep_translator import GoogleTranslator
from deep_translator import single_detection
DATA_PATH = Path.cwd()
keywordsDF = pd.read_csv(DATA_PATH / 'keywords.csv', delimiter=',') #,index_col='keyword'
keywordsDF['uniqueString'] = keywordsDF['keyword'] + "_" + keywordsDF['language'] + "_" + keywordsDF['topic']
keywordsDF['crc'] = keywordsDF['uniqueString'].apply(
lambda x:
hashlib.sha256(x.encode()).hexdigest()
)
keywordsDF = keywordsDF.sort_values(by=['ratioNew'], ascending=False)
collectedNews = {}
def addNewsToCollection(data):
global collectedNews
year_month = '1970_01'
pubDate = None
try:
pubDate = parser.parse(data['published'])
except:
print('date parse error 1')
if(not pubDate):
try:
pubDate = parser.isoparse(data['published'])
except:
print('date parse error 2')
if(pubDate):
year_month = pubDate.strftime('%Y_%m')
# if(not data['language'] in collectedNews):
# collectedNews[data['language']] = {}
fileDate = 'news_'+year_month+'.csv'
if(not fileDate in collectedNews):
if(os.path.isfile(DATA_PATH / 'csv' / fileDate)):
#df = pd.read_csv(DATA_PATH / fileDate, delimiter=',' ,index_col='url')
df = pd.read_csv(DATA_PATH / 'csv' / fileDate, delimiter=',',index_col='index')
collectedNews[fileDate] = df.to_dict('index')
else:
collectedNews[fileDate] = {}
if(not data['url'] in collectedNews[fileDate]):
#data = translateNews(data)
#print(data['en'])
#data = archiveUrl(data)
collectedNews[fileDate][data['url']] = data
return True
return False
# index,url,valid,domain,title,description,image,published,archive,content,quote,language,keyword
def storeCollection():
global collectedNews
cols = ['url','valid','domain','title','description','image','published','archive','content','quote','language','keyword']
for dateFile in collectedNews:
df = pd.DataFrame.from_dict(collectedNews[dateFile], orient='index', columns=cols)
#df.to_csv(DATA_PATH / dateFile, index=True)
df.to_csv(DATA_PATH / 'csv' / dateFile, index_label='index')
collectedNews = {}
def getDFfromGitHub(url, delimiter=','):
stream=requests.get(url).content
dataframe=pd.read_csv(io.StringIO(stream.decode('utf-8')), delimiter=delimiter)
dataframe = dataframe.sort_values(by=['published'], ascending=True)
return dataframe
manualDF = pd.DataFrame(None)
gitNames = ["news_2022_01.csv","news_2022_02.csv","news_2022_03.csv","news_2022_04.csv","news_2022_05.csv","news_2022_06.csv",
"news_2022_07.csv","news_2022_08.csv","news_2022_09.csv","news_2022_10.csv","news_2022_11.csv","news_2022_12.csv"]
for gitName in gitNames:
gitUrl = "https://raw.githubusercontent.com/newsWhisperer/winterWeapon/main/csv/" + gitName
df = getDFfromGitHub(gitUrl)
if(manualDF.empty):
manualDF = df
else:
manualDF = pd.concat([manualDF, df])
manualDF = manualDF.sort_values(by=['published'], ascending=True)
manualDF['title'] = manualDF['title'].fillna('')
manualDF['description'] = manualDF['description'].fillna('')
print(manualDF)
# keyword
#
counter = 0
notFoundUrls = []
for index, column in manualDF.iterrows():
#newData = {'url': column['url'], 'language':'de', 'valid':0, 'quote':'',
# 'content':'', 'archive':'', 'title':'','description':'', 'published':'1970-01-01T00:00:00'}
counter += 1
if((counter % 100) ==0):
print(counter)
storeCollection()
if(random.random()>0.75):
newData = column
#print(column)
searchQuote = newData['title'] + " " + newData['description']
foundKeywords = []
found = False
for index2, column2 in keywordsDF.iterrows():
keyword = column2['keyword']
allFound = True
keywords = keyword.strip("'").split(" ")
for keyw in keywords:
allFound = allFound and (keyw in searchQuote)
if(allFound):
foundKeywords.append(keyword)
found = True
if(found):
newData['keyword'] = random.choice(foundKeywords)
addNewsToCollection(newData)
storeCollection()
#print(notFoundUrls)
for xx in notFoundUrls:
print(xx)