forked from lllyasviel/stable-diffusion-webui-forge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spaces.py
251 lines (184 loc) · 7.81 KB
/
spaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from modules_forge.initialization import initialize_forge
initialize_forge()
import sys
import types
import os
import torch
import inspect
import functools
import gradio.oauth
import gradio.routes
import contextlib
from backend import memory_management
from backend.operations import DynamicSwapInstaller
from diffusers.models import modeling_utils as diffusers_modeling_utils
from transformers import modeling_utils as transformers_modeling_utils
from backend.attention import AttentionProcessorForge
from starlette.requests import Request
_original_init = Request.__init__
def patched_init(self, scope, receive=None, send=None):
if 'session' not in scope:
scope['session'] = dict()
_original_init(self, scope, receive, send)
return
Request.__init__ = patched_init
gradio.oauth.attach_oauth = lambda x: None
gradio.routes.attach_oauth = lambda x: None
ALWAYS_SWAP = False
module_in_gpu: torch.nn.Module = None
gpu = memory_management.get_torch_device()
cpu = torch.device('cpu')
diffusers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
transformers_modeling_utils.get_parameter_device = lambda *args, **kwargs: gpu
def unload_module():
global module_in_gpu
if module_in_gpu is None:
return
DynamicSwapInstaller.uninstall_model(module_in_gpu)
module_in_gpu.to(cpu)
print(f'Move module to CPU: {type(module_in_gpu).__name__}')
module_in_gpu = None
memory_management.soft_empty_cache()
return
def greedy_move_to_gpu(model, model_gpu_memory_when_using_cpu_swap):
mem_counter = 0
memory_in_swap = 0
for m in model.modules():
if hasattr(m, "weight"):
module_mem = memory_management.module_size(m)
if mem_counter + module_mem < model_gpu_memory_when_using_cpu_swap:
m.to(gpu)
mem_counter += module_mem
else:
m.to(cpu)
memory_in_swap += module_mem
print(f"[Memory Management] Loaded to CPU Swap: {memory_in_swap / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Loaded to GPU: {mem_counter / (1024 * 1024):.2f} MB")
return
def load_module(m):
global module_in_gpu
if module_in_gpu == m:
return
unload_module()
model_memory = memory_management.module_size(m)
current_free_mem = memory_management.get_free_memory(gpu)
inference_memory = 1.5 * 1024 * 1024 * 1024 # memory_management.minimum_inference_memory() # TODO: connect to main memory system
estimated_remaining_memory = current_free_mem - model_memory - inference_memory
print(f"[Memory Management] Current Free GPU Memory: {current_free_mem / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Required Model Memory: {model_memory / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Required Inference Memory: {inference_memory / (1024 * 1024):.2f} MB")
print(f"[Memory Management] Estimated Remaining GPU Memory: {estimated_remaining_memory / (1024 * 1024):.2f} MB")
if ALWAYS_SWAP or estimated_remaining_memory < 0:
print(f'Move module to SWAP: {type(m).__name__}')
DynamicSwapInstaller.install_model(m, target_device=gpu)
model_gpu_memory_when_using_cpu_swap = memory_management.compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory)
greedy_move_to_gpu(m, model_gpu_memory_when_using_cpu_swap)
else:
print(f'Move module to GPU: {type(m).__name__}')
m.to(gpu)
module_in_gpu = m
return
class GPUObject:
def __init__(self):
self.module_list = []
def __enter__(self):
self.original_init = torch.nn.Module.__init__
self.original_to = torch.nn.Module.to
def patched_init(module, *args, **kwargs):
self.module_list.append(module)
return self.original_init(module, *args, **kwargs)
def patched_to(module, *args, **kwargs):
self.module_list.append(module)
return self.original_to(module, *args, **kwargs)
torch.nn.Module.__init__ = patched_init
torch.nn.Module.to = patched_to
return self
def __exit__(self, exc_type, exc_val, exc_tb):
torch.nn.Module.__init__ = self.original_init
torch.nn.Module.to = self.original_to
self.module_list = set(self.module_list)
self.to(device=torch.device('cpu'))
memory_management.soft_empty_cache()
return
def to(self, device):
for module in self.module_list:
module.to(device)
print(f'Forge Space: Moved {len(self.module_list)} Modules to {device}')
return self
def gpu(self):
self.to(device=gpu)
return self
def capture_gpu_object(capture=True):
if capture:
return GPUObject()
else:
return contextlib.nullcontext()
def GPU(gpu_objects=None, manual_load=False, **kwargs):
gpu_objects = gpu_objects or []
if not isinstance(gpu_objects, (list, tuple)):
gpu_objects = [gpu_objects]
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print("Entering Forge Space GPU ...")
memory_management.unload_all_models()
if not manual_load:
for o in gpu_objects:
o.gpu()
result = func(*args, **kwargs)
print("Cleaning Forge Space GPU ...")
unload_module()
for o in gpu_objects:
o.to(device=torch.device('cpu'))
memory_management.soft_empty_cache()
return result
return wrapper
return decorator
def convert_root_path():
frame = inspect.currentframe().f_back
caller_file = frame.f_code.co_filename
caller_file = os.path.abspath(caller_file)
result = os.path.join(os.path.dirname(caller_file), 'huggingface_space_mirror')
return result + '/'
def automatically_move_to_gpu_when_forward(m: torch.nn.Module, target_model: torch.nn.Module = None):
if target_model is None:
target_model = m
def patch_method(method_name):
if not hasattr(m, method_name):
return
if not hasattr(m, 'forge_space_hooked_names'):
m.forge_space_hooked_names = []
if method_name in m.forge_space_hooked_names:
print(f'Already hooked {type(m).__name__}.{method_name}')
return
print(f'Automatic hook: {type(m).__name__}.{method_name}')
original_method = getattr(m, method_name)
def patched_method(*args, **kwargs):
load_module(target_model)
return original_method(*args, **kwargs)
setattr(m, method_name, patched_method)
m.forge_space_hooked_names.append(method_name)
return
for method_name in ['forward', 'encode', 'decode']:
patch_method(method_name)
return
def automatically_move_pipeline_components(pipe):
for attr_name in dir(pipe):
attr_value = getattr(pipe, attr_name, None)
if isinstance(attr_value, torch.nn.Module):
automatically_move_to_gpu_when_forward(attr_value)
return
def change_attention_from_diffusers_to_forge(m):
m.set_attn_processor(AttentionProcessorForge())
return
# diffusers version fix
import diffusers.models
diffusers.models.embeddings.PositionNet = diffusers.models.embeddings.GLIGENTextBoundingboxProjection
import diffusers.models.transformers.dual_transformer_2d
dual_transformer_2d = types.ModuleType('diffusers.models.dual_transformer_2d')
dual_transformer_2d.__dict__.update(diffusers.models.transformers.dual_transformer_2d.__dict__)
sys.modules['diffusers.models.dual_transformer_2d'] = dual_transformer_2d
import diffusers.models.transformers.transformer_2d
transformer_2d = types.ModuleType('diffusers.models.transformer_2d')
transformer_2d.__dict__.update(diffusers.models.transformers.transformer_2d.__dict__)
sys.modules['diffusers.models.transformer_2d'] = transformer_2d