-
Notifications
You must be signed in to change notification settings - Fork 370
/
Copy pathPredict-Diabetes.Rmd
159 lines (122 loc) · 5.9 KB
/
Predict-Diabetes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
title: "Data Mining with R: Predict Diabetes"
output: html_document
---
The dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. I downloaded from [UCI Machine Learning Repository](https://www.kaggle.com/uciml). The objective is to predict based on diagnostic measurements whether a patient has diabetes.
```{r global_options, include=FALSE}
knitr::opts_chunk$set(echo=FALSE, warning=FALSE, message=FALSE)
```
```{r}
library(ggplot2)
library(dplyr)
library(gridExtra)
library(corrplot)
```
Look at the structure and the first few rows.
```{r}
diabetes <- read.csv('diabetes.csv')
dim(diabetes)
str(diabetes)
head(diabetes)
```
### Exploratory Data Analysis and Feature Selection
Check missing values
```{r}
cat("Number of missing value:", sum(is.na(diabetes)), "\n")
```
Staitstical summary
```{r}
summary(diabetes)
```
```{r}
diabetes$Outcome <- factor(diabetes$Outcome)
```
Histogram of numeric variables
```{r}
p1 <- ggplot(diabetes, aes(x=Pregnancies)) + ggtitle("Number of times pregnant") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 1, colour="black", fill="white") + ylab("Percentage")
p2 <- ggplot(diabetes, aes(x=Glucose)) + ggtitle("Glucose") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 5, colour="black", fill="white") + ylab("Percentage")
p3 <- ggplot(diabetes, aes(x=BloodPressure)) + ggtitle("Blood Pressure") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 2, colour="black", fill="white") + ylab("Percentage")
p4 <- ggplot(diabetes, aes(x=SkinThickness)) + ggtitle("Skin Thickness") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 2, colour="black", fill="white") + ylab("Percentage")
p5 <- ggplot(diabetes, aes(x=Insulin)) + ggtitle("Insulin") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 20, colour="black", fill="white") + ylab("Percentage")
p6 <- ggplot(diabetes, aes(x=BMI)) + ggtitle("Body Mass Index") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth = 1, colour="black", fill="white") + ylab("Percentage")
p7 <- ggplot(diabetes, aes(x=DiabetesPedigreeFunction)) + ggtitle("Diabetes Pedigree Function") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), colour="black", fill="white") + ylab("Percentage")
p8 <- ggplot(diabetes, aes(x=Age)) + ggtitle("Age") +
geom_histogram(aes(y = 100*(..count..)/sum(..count..)), binwidth=1, colour="black", fill="white") + ylab("Percentage")
grid.arrange(p1, p2, p3, p4, p5, p6, p7, p8, ncol=2)
```
All the variables have reasonable broad distribution, therefore, will be kept for the regression analysis.
Correlation Between Numeric Varibales
```{r}
numeric.var <- sapply(diabetes, is.numeric)
corr.matrix <- cor(diabetes[,numeric.var])
corrplot(corr.matrix, main="\n\nCorrelation Plot for Numerical Variables", order = "hclust", tl.col = "black", tl.srt=45, tl.cex=0.5, cl.cex=0.5)
```
The numeric variabls are almost not correlated.
Correlation bewteen numeric variables and outcome.
```{r}
attach(diabetes)
par(mfrow=c(2,4))
boxplot(Pregnancies~Outcome, main="No. of Pregnancies vs. Diabetes",
xlab="Outcome", ylab="Pregnancies")
boxplot(Glucose~Outcome, main="Glucose vs. Diabetes",
xlab="Outcome", ylab="Glucose")
boxplot(BloodPressure~Outcome, main="Blood Pressure vs. Diabetes",
xlab="Outcome", ylab="Blood Pressure")
boxplot(SkinThickness~Outcome, main="Skin Thickness vs. Diabetes",
xlab="Outcome", ylab="Skin Thickness")
boxplot(Insulin~Outcome, main="Insulin vs. Diabetes",
xlab="Outcome", ylab="Insulin")
boxplot(BMI~Outcome, main="BMI vs. Diabetes",
xlab="Outcome", ylab="BMI")
boxplot(DiabetesPedigreeFunction~Outcome, main="Diabetes Pedigree Function vs. Diabetes", xlab="Outcome", ylab="DiabetesPedigreeFunction")
boxplot(Age~Outcome, main="Age vs. Diabetes",
xlab="Outcome", ylab="Age")
```
Blood pressure and skin thickness show little variation with diabetes, they will be excluded from the model. Other variables show more or less correlation with diabetes, so will be kept.
### Logistic Regression
```{r}
diabetes$BloodPressure <- NULL
diabetes$SkinThickness <- NULL
train <- diabetes[1:540,]
test <- diabetes[541:768,]
model <-glm(Outcome ~.,family=binomial(link='logit'),data=train)
summary(model)
```
The top three most relevant features are "Glucose", "BMI" and "Number of times pregnant" because of the low p-values.
"Insulin" and "Age" appear not statistically significant.
```{r}
anova(model, test="Chisq")
```
From the table of deviance, we can see that adding insulin and age have little effect on the residual deviance.
### Cross Validation
```{r}
fitted.results <- predict(model,newdata=test,type='response')
fitted.results <- ifelse(fitted.results > 0.5,1,0)
misClasificError <- mean(fitted.results != test$Outcome)
print(paste('Accuracy',1-misClasificError))
```
### Decision Tree
```{r}
library(rpart)
model2 <- rpart(Outcome ~ Pregnancies + Glucose + BMI + DiabetesPedigreeFunction, data=train,method="class")
```
```{r}
plot(model2, uniform=TRUE,
main="Classification Tree for Diabetes")
text(model2, use.n=TRUE, all=TRUE, cex=.8)
```
This means if a person's BMI less than 45.4 and her diabetes digree function less than 0.8745, then she is more likely to have diabetes.
Confusion table and accuracy
```{r}
treePred <- predict(model2, test, type = 'class')
table(treePred, test$Outcome)
mean(treePred==test$Outcome)
```
In this project, I compared the performance of Logistic Regression and Decision Tree algorithms and found that Logistic Regression performed better on this standard, unaltered dataset. However, there are things we can do to improve the generalization performance in decision tree induction such as pruning. I will perform that in the future posts.