-
Notifications
You must be signed in to change notification settings - Fork 370
/
Copy pathDonald-Trump-Tweets.Rmd
257 lines (200 loc) · 8.63 KB
/
Donald-Trump-Tweets.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
output:
html_document:
smart: no
variant: default
---
The Latest Trump's Tweets
============================================================================
Susan Li
April 3, 2017
```{r global_options, include=FALSE}
knitr::opts_chunk$set(echo=FALSE, warning=FALSE, message=FALSE)
```
Just finished a few hours text mining lesson, can't wait to put my new skill into practice, starting from Trump's tweets.
First, apply API keys from twitter.
```{r}
library(twitteR)
consumer_key <- "Your_Consumer_Key"
consumer_secret <- "Your_Consumer_Secret"
access_token <- NULL
access_secret <- NULL
setup_twitter_oauth(consumer_key, consumer_secret, access_token, access_secret)
```
The maximize request is 3200 tweets, I got 815, which is not bad.
```{r}
tweets <- userTimeline("realDonaldTrump", n = 3200)
(n.tweet <- length(tweets))
```
Have a look the first three, then convert all these 815 tweets to a data frame.
```{r}
tweets[1:3]
# Conver to dataframe
tweets.df <- twListToDF(tweets)
```
Text cleaning process, which includes convert all letters to lower case, remove URL, remove anything other than English letter and space, remove stopwords and extra white space.
```{r}
# Text mining process
library(tm)
library(stringr)
myCorpus <- Corpus(VectorSource(tweets.df$text))
# convert to lower case
myCorpus <- tm_map(myCorpus, content_transformer(str_to_lower))
# remove URLs
removeURL <- function(x) gsub("http[^[:space:]]*", "", x)
myCorpus <- tm_map(myCorpus, content_transformer(removeURL))
# remove anything other than English letters or space
removeNumPunct <- function(x) gsub("[^[:alpha:][:space:]]*", "", x)
myCorpus <- tm_map(myCorpus, content_transformer(removeNumPunct))
# remove stopwords
myStopwords <- myStopwords <- c(stopwords('english'), "amp", "trump")
myCorpus <- tm_map(myCorpus, removeWords, myStopwords)
# remove extra whitespace
myCorpus <- tm_map(myCorpus, stripWhitespace)
```
Look at these three tweets again.
```{r}
# Stemming process
myCorpus <- tm_map(myCorpus, stemDocument)
# inspect the first three documents
inspect(myCorpus[1:3])
```
Need to replace a few words, such as 'peopl' to 'people', 'whitehous' to 'whitehouse', 'countri' to 'country'.
```{r}
replaceWord <- function(corpus, oldword, newword) {
tm_map(corpus, content_transformer(gsub),
pattern=oldword, replacement=newword)
}
myCorpus <- replaceWord(myCorpus, "peopl", "people")
myCorpus <- replaceWord(myCorpus, "whitehous", "whitehouse")
myCorpus <- replaceWord(myCorpus, "countri", "country")
```
### Building term document matrix
This is a matrix of numbers (0 and 1) that keeps track of which documents in a corpus use which terms.
```{r}
# term document matrix
tdm <- TermDocumentMatrix(myCorpus, control = list(wordLengths = c(1, Inf)))
tdm
```
As you can see, the term-document matrix is composed of 2243 terms and 815 documents(tweets). It is very sparse, with 100% of the entries being zero. Let's have a look at the terms of 'clinton', 'bad' and 'great', and tweets numbered 21 to 30.
```{r}
idx <- which(dimnames(tdm)$Terms %in% c("clinton", "bad", "great"))
as.matrix(tdm[idx, 21:30])
```
### What are the top frequent terms?
```{r}
(freq.terms <- findFreqTerms(tdm, lowfreq = 40))
```
### A picture worth a thousand words.
```{r}
term.freq <- rowSums(as.matrix(tdm))
term.freq <- subset(term.freq, term.freq >= 40)
df <- data.frame(term = names(term.freq), freq = term.freq)
library(ggplot2)
ggplot(df, aes(x=term, y=freq)) + geom_bar(stat="identity") + xlab("Terms") + ylab("Count") + coord_flip() + theme(axis.text=element_text(size=7))
```
### Word Cloud
```{r}
m <- as.matrix(tdm)
# calculate the frequency of words and sort it by frequency
word.freq <- sort(rowSums(m), decreasing = T)
# colors
library(RColorBrewer)
pal <- brewer.pal(9, "BuGn")[-(1:4)]
# plot word cloud
library(wordcloud)
wordcloud(words = names(word.freq), freq = word.freq, min.freq = 3, random.order = F, colors = pal)
```
### Which word/words are associated with 'will'?
```{r}
findAssocs(tdm, "will", 0.2)
```
### Which word/words are associated with 'great'? - This is obvious.
```{r}
findAssocs(tdm, "great", 0.2)
```
### Which word/ words are associated with 'bad'?
```{r}
findAssocs(tdm, "bad", 0.2)
```
### Clustering Words
```{r}
# remove sparse terms
tdm2 <- removeSparseTerms(tdm, sparse=0.95)
m2 <- as.matrix(tdm2)
# cluster terms
distMatrix <- dist(scale(m2))
fit <- hclust(distMatrix, method="ward.D")
plot(fit)
# cut tree into 10 clusters
rect.hclust(fit, k=10)
(groups <- cutree(fit, k=10))
```
We can see the words in the tweets, words "will, great, thank, us, join, today" are not clustered into any group, "hillari, clinton" are clustered into one group, "now, president, elect, time, go, make, america, state, watch, get, vote" are clustered in one group, "people, country" are clustered into one group, and "just, nows" are clustered into one group.
### Clustering Tweets with the k-means Algorithm
```{r}
# transpose the matrix to cluster documents (tweets)
m3 <- t(m2)
# set a fixed random seed
set.seed(100)
# k-means clustering of tweets
k <- 8
kmeansResult <- kmeans(m3, k)
# cluster centers
round(kmeansResult$centers, digits=3)
```
### Check the top three words in every cluster
```{r}
for (i in 1:k) {
cat(paste("cluster ", i, ": ", sep=""))
s <- sort(kmeansResult$centers[i,], decreasing=T)
cat(names(s)[1:3], "\n")
}
```
I have admit that I can't easily distinguish the clusters of Trump's tweets are of different topics.
### Sentiment Analysis
The sentiment analysis algorithm used here is based on [NRC Word Emotion Association Lexion](http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm), available from the `tidytext` package which developed by [Julia Silge](http://juliasilge.com/) and [David Robinson](http://varianceexplained.org/). The algorithm associates with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive).
Sometimes there are tweaks I need to do to get rid of the problem characters.
```{r}
library(tidytext)
library(syuzhet)
# get rid of the problem characters:
tweets.df$text <- sapply(tweets.df$text,function(row) iconv(row, "latin1", "ASCII", sub=""))
Trump_sentiment <- get_nrc_sentiment(tweets.df$text)
```
Have a look the head of Trump's tweets sentiment scores:
```{r}
head(Trump_sentiment)
```
Then combine Trump tweets dataframe and Trump sentiment dataframe together.
```{r}
tweets.df <- cbind(tweets.df, Trump_sentiment)
sentiment_total <- data.frame(colSums(tweets.df[,c(17:26)]))
names(sentiment_total) <- "count"
sentiment_total <- cbind("sentiment" = rownames(sentiment_total), sentiment_total)
```
Let's visualize it!
```{r}
ggplot(aes(x = sentiment, y = count, fill = sentiment), data = sentiment_total) +
geom_bar(stat = 'identity') + ggtitle('Sentiment Score for Trump Latest Tweets') + theme(legend.position = "none")
```
Trump's tweets appear more positive than negative, more trust than anger. Has Trump's tweets always been positive or only after he won the election?
```{r}
library(dplyr)
library(lubridate)
library(reshape2)
tweets.df$timestamp <- with_tz(ymd_hms(tweets.df$created), "America/New_York")
Tweets_trend <- tweets.df %>%
group_by(timestamp = cut(timestamp, breaks="1 months")) %>%
summarise(negative = mean(negative),
positive = mean(positive)) %>% melt
library(scales)
ggplot(aes(x = as.Date(timestamp), y = value, group = variable), data = Tweets_trend) +
geom_line(size = 2.5, aes(color = variable)) +
geom_point(size = 1) +
ylab("Average sentiment score") +
ggtitle("Trump Tweets Sentiment Over Time")
```
The positive sentiment scores are always higher than the negative sentiment scores. And the negative sentiment experienced a significant drop recently,the positive sentiment increased to the highlest point. However, the simple text mining process conducted in this post does not make this conclusion. A more sophisticated [text analysis of Trump's tweets](http://varianceexplained.org/r/trump-tweets/) by [David Robinson](http://varianceexplained.org/r/trump-tweets/) found that Trump writes only the angrier half from Android, and another postive half from his staff using iPhone.
## The end
I really enjoyed working on Trump Tweets analysis. Learning about text mining and social network analysis is very rewarding. Thanks to [Julia Silge](http://juliasilge.com/) and [Yanchang Zhao](http://www.rdatamining.com/)'s tutorials to make it possible.