-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathvanilla.py
179 lines (171 loc) · 6.1 KB
/
vanilla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import tensorflow as tf
import numpy as np
import data
import utils
import argparse
import random
####
# disable logs
tf.logging.set_verbosity(tf.logging.ERROR)
#
# checkpoint
ckpt_path = 'ckpt/vanilla1/'
#
###
# get data
X, Y, idx2ch, ch2idx = data.load_data('data/paulg/')
#
# params
hsize = 256
num_classes = len(idx2ch)
seqlen = X.shape[1]
state_size = hsize
BATCH_SIZE = 128
# step operation
def step(hprev, x):
# initializer
xav_init = tf.contrib.layers.xavier_initializer
# params
W = tf.get_variable('W', shape=[state_size, state_size], initializer=xav_init())
U = tf.get_variable('U', shape=[state_size, state_size], initializer=xav_init())
b = tf.get_variable('b', shape=[state_size], initializer=tf.constant_initializer(0.))
# current hidden state
h = tf.tanh(tf.matmul(hprev, W) + tf.matmul(x,U) + b)
return h
# parse arguments
def parse_args():
parser = argparse.ArgumentParser(
description='Vanilla Recurrent Neural Network for Text Hallucination, built with tf.scan')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-g', '--generate', action='store_true',
help='generate text')
group.add_argument('-t', '--train', action='store_true',
help='train model')
parser.add_argument('-n', '--num_words', required=False, type=int,
help='number of words to generate')
args = vars(parser.parse_args())
return args
if __name__ == '__main__':
#
# parse arguments
args = parse_args()
#
# build graph
tf.reset_default_graph()
# inputs
xs_ = tf.placeholder(shape=[None, None], dtype=tf.int32)
ys_ = tf.placeholder(shape=[None], dtype=tf.int32)
#
# embeddings
embs = tf.get_variable('emb', [num_classes, state_size])
rnn_inputs = tf.nn.embedding_lookup(embs, xs_)
#
# initial hidden state
init_state = tf.placeholder(shape=[None, state_size], dtype=tf.float32, name='initial_state')
#
# here comes the scan operation; wake up!
# tf.scan(fn, elems, initializer)
states = tf.scan(step,
tf.transpose(rnn_inputs, [1,0,2]),
initializer=init_state)
###
# set last state
last_state = states[-1]
states = tf.transpose(states, [1,0,2])
#
# predictions
V = tf.get_variable('V', shape=[state_size, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
bo = tf.get_variable('bo', shape=[num_classes],
initializer=tf.constant_initializer(0.))
#
# flatten states to 2d matrix for matmult with V
states_reshaped = tf.reshape(states, [-1, state_size])
logits = tf.matmul(states_reshaped, V) + bo
predictions = tf.nn.softmax(logits)
#
# optimization
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, ys_)
loss = tf.reduce_mean(losses)
train_op = tf.train.AdamOptimizer(learning_rate=0.1).minimize(loss)
#
# to generate or to train - that is the question.
if args['train']:
#
# training
# setup batches for training
epochs = 50
#
# set batch size
batch_size = BATCH_SIZE
train_set = utils.rand_batch_gen(X,Y,batch_size=batch_size)
# training session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_loss = 0
try:
for i in range(epochs):
for j in range(1000):
xs, ys = train_set.__next__()
_, train_loss_ = sess.run([train_op, loss], feed_dict = {
xs_ : xs,
ys_ : ys.reshape([batch_size*seqlen]),
init_state : np.zeros([batch_size, state_size])
})
train_loss += train_loss_
print('[{}] loss : {}'.format(i,train_loss/1000))
train_loss = 0
except KeyboardInterrupt:
print('interrupted by user at ' + str(i))
#
# training ends here;
# save checkpoint
saver = tf.train.Saver()
saver.save(sess, ckpt_path + 'vanilla1.ckpt', global_step=i)
elif args['generate']:
#
# generate text
random_init_word = random.choice(idx2ch)
current_word = ch2idx[random_init_word]
#
# start session
with tf.Session() as sess:
# init session
sess.run(tf.global_variables_initializer())
#
# restore session
ckpt = tf.train.get_checkpoint_state(ckpt_path)
saver = tf.train.Saver()
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
# generate operation
words = [current_word]
state = None
# set batch_size to 1
batch_size = 1
num_words = args['num_words'] if args['num_words'] else 111
# enter the loop
for i in range(num_words):
if state:
feed_dict = { xs_ : np.array(current_word).reshape([1, 1]),
init_state : state_ }
else:
feed_dict = { xs_ : np.array(current_word).reshape([1,1])
, init_state : np.zeros([batch_size, state_size]) }
#
# forward propagation
preds, state_ = sess.run([predictions, last_state], feed_dict=feed_dict)
#
# set flag to true
state = True
#
# set new word
current_word = np.random.choice(preds.shape[-1], 1, p=np.squeeze(preds))[0]
# add to list of words
words.append(current_word)
#########
# text generation complete
#
print('______Generated Text_______')
print(''.join([idx2ch[w] for w in words]))
print('___________________________')