-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_statistics.cpp
243 lines (208 loc) · 8.93 KB
/
input_statistics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "main.h"
#include "input_statistics.h"
#include <fstream>
#include <iostream>
#include "net_pl.h"
using namespace std;
void displayCellStatistics(vector<Cell> &cells)
{
ofstream output_file;
double average_area = 0;
double average_nonterminal_area = 0;
int connected_to_small_nets_only = 0;
int number_of_nonterminals = 0;
int connected_to_big_nets_only = 0;
int connected_to_2_net_and_to_smallest_net = 0;
bool connected_to_smallest_net;
bool small_net, big_net;
output_file.open("cell_statistics.txt");
for (int i = 0; i < cells.size(); i++){
average_area += cells[i].getArea();
if (cells[i].getTerminal() == false){
number_of_nonterminals++;
average_nonterminal_area += cells[i].getArea();
}
small_net = false;
big_net = false;
connected_to_smallest_net = false;
for (int j = 0; j < cells[i].getPinNum(); j++){
if (design.net_lib[cells[i].getNet(j)].getNetDegree() < 5){
small_net = true;
if (design.net_lib[cells[i].getNet(j)].getNetDegree() == 2){
connected_to_smallest_net = true;
}
}
else{
small_net = false;
big_net = true;
}
}
if (connected_to_smallest_net && cells[i].getPinNum() == 2){
connected_to_2_net_and_to_smallest_net++;
}
if (small_net && !big_net){
connected_to_small_nets_only++;
}
if (big_net && !small_net){
connected_to_big_nets_only++;
}
}
average_area /= cells.size();
average_nonterminal_area /= number_of_nonterminals;
output_file << "Number of cells: " << cells.size() << endl;
output_file << "Average cell area: " << average_area << endl;
output_file << "Average nonterminal cell area: " << average_nonterminal_area << endl;
output_file << "Number of cells connected to big nets only: " << connected_to_big_nets_only << endl;
output_file << "Number of cells connected to small nets only: " << connected_to_small_nets_only << endl;
output_file << "Number of 2-2 cells: " << connected_to_2_net_and_to_smallest_net << endl;
cout << "Number of cells: " << cells.size() << endl;
cout << "Average cell area: " << average_area << endl;
cout << "Number of cells connected to big nets only: " << connected_to_big_nets_only << endl;
cout << "Number of cells connected to small nets only: " << connected_to_small_nets_only << endl;
cout << "Number of 2-2 cells: " << connected_to_2_net_and_to_smallest_net << endl;
}
void displayNetStatistics(void)
{
double starting_HPWL = 0;
double HPWL_from_small_nets = 0;
double HPWL_from_degree_2_nets = 0;
double HPWL_from_degree_3_nets = 0;
double HPWL_from_degree_4_nets = 0;
double average_HPWL_per_cell = 0;
double HPWL_per_cell_for_degree_2_nets = 0;
double HPWL_per_cell_for_degree_3_nets = 0;
double HPWL_per_cell_for_degree_4_nets = 0;
int total_number_of_nets = design.net_lib.size();
int number_of_degree_2_nets = 0;
int number_of_degree_3_nets = 0;
int number_of_degree_4_nets = 0;
ofstream output_file;
Net_Pl *curr_net;
output_file.open("net_statistics.txt");
for (int i = 0; i < total_number_of_nets; i++){
curr_net = &design.net_lib[i];
starting_HPWL += curr_net->getHPWL();
average_HPWL_per_cell += curr_net->getHPWL() / curr_net->getNetDegree();
if (curr_net->getNetDegree() == 2){
HPWL_from_degree_2_nets += curr_net->getHPWL();
number_of_degree_2_nets++;
}
if (curr_net->getNetDegree() == 3){
HPWL_from_degree_3_nets += curr_net->getHPWL();
number_of_degree_3_nets++;
}
if (curr_net->getNetDegree() == 4){
HPWL_from_degree_4_nets += curr_net->getHPWL();
number_of_degree_4_nets++;
}
}
average_HPWL_per_cell /= total_number_of_nets;
HPWL_per_cell_for_degree_2_nets = HPWL_from_degree_2_nets / (number_of_degree_2_nets * 2);
HPWL_per_cell_for_degree_3_nets = HPWL_from_degree_3_nets / (number_of_degree_3_nets * 3);
HPWL_per_cell_for_degree_4_nets = HPWL_from_degree_4_nets / (number_of_degree_4_nets * 4);
output_file << "Total number of nets: " << total_number_of_nets << endl;
output_file << "Number of degree 2 nets: " << number_of_degree_2_nets << endl;
output_file << "Number of degree 3 nets: " << number_of_degree_3_nets << endl;
output_file << "Number of degree 4 nets: " << number_of_degree_4_nets << endl;
output_file << endl;
output_file << "Starting HPWL: " << starting_HPWL << endl;
output_file << "HPWL from degree 2 nets: " << HPWL_from_degree_2_nets << endl;
output_file << "HPWL from degree 3 nets: " << HPWL_from_degree_3_nets << endl;
output_file << "HPWL from degree 4 nets: " << HPWL_from_degree_4_nets << endl;
output_file << endl;
output_file << "Average HPWL per cell for a net: " << average_HPWL_per_cell << endl;
output_file << "HPWL per cell for degree 2 nets: " << HPWL_per_cell_for_degree_2_nets << endl;
output_file << "HPWL per cell for degree 3 nets: " << HPWL_per_cell_for_degree_3_nets << endl;
output_file << "HPWL per cell for degree 4 nets: " << HPWL_per_cell_for_degree_4_nets << endl;
cout << "Total number of nets: " << total_number_of_nets << endl;
cout << "Number of degree 2 nets: " << number_of_degree_2_nets << endl;
cout << "Number of degree 3 nets: " << number_of_degree_3_nets << endl;
cout << "Number of degree 4 nets: " << number_of_degree_4_nets << endl;
cout << endl;
cout << "Starting HPWL: " << starting_HPWL << endl;
cout << "HPWL from degree 2 nets: " << HPWL_from_degree_2_nets << endl;
cout << "HPWL from degree 3 nets: " << HPWL_from_degree_3_nets << endl;
cout << "HPWL from degree 4 nets: " << HPWL_from_degree_4_nets << endl;
cout << endl;
cout << "Average HPWL per cell for a net: " << average_HPWL_per_cell << endl;
cout << "HPWL per cell for degree 2 nets: " << HPWL_per_cell_for_degree_2_nets << endl;
cout << "HPWL per cell for degree 3 nets: " << HPWL_per_cell_for_degree_3_nets << endl;
cout << "HPWL per cell for degree 4 nets: " << HPWL_per_cell_for_degree_4_nets << endl;
}
void displayOptimalRegionStatistics(vector<Cell> &cells)
{
double average_optimal_region_area = 0;
double average_optimal_region_area_for_boundary = 0;
double average_distance_to_optimal_region = 0;
int point_optimal_region = 0;
int number_of_boundary_cells = 0;
int total_number_of_nonterminals = 0;
int number_of_line_regions = 0;
Region r;
int huge_or = 0;
ofstream output_file;
output_file.open("optimal_region_statistics.txt");
for (int i = 0; i < cells.size(); i++){
if (cells[i].getTerminal() == false){
findOptimalRegion(i, r);
total_number_of_nonterminals++;
if (cells[i].getCenter().y < r.bot_limit){
average_distance_to_optimal_region += r.bot_limit - cells[i].getCenter().y;
}
if (cells[i].getCenter().y > r.top_limit){
average_distance_to_optimal_region += cells[i].getCenter().y - r.top_limit;
}
if (cells[i].getCenter().x < r.left_limit){
average_distance_to_optimal_region += r.left_limit - cells[i].getCenter().x;
}
if (cells[i].getCenter().x > r.right_limit){
average_distance_to_optimal_region += cells[i].getCenter().x - r.right_limit;
}
if (r.top_limit == r.bot_limit && r.right_limit == r.left_limit){
point_optimal_region++;
}
if ((r.top_limit - r.bot_limit) * (r.right_limit - r.left_limit) > 10000){
huge_or++;
}
average_optimal_region_area += (r.top_limit - r.bot_limit) * (r.right_limit - r.left_limit);
if (!r.isInThisRegion(i)){
average_optimal_region_area_for_boundary += (r.top_limit - r.bot_limit) * (r.right_limit - r.left_limit);
number_of_boundary_cells++;
}
else{
if ((r.top_limit - r.bot_limit) * (r.right_limit - r.left_limit) == 0){
number_of_line_regions++;
}
}
}
else{
int terminal;
terminal = true;
r.left_limit = terminal;
}
}
cout << number_of_line_regions << endl;
cout << huge_or << endl;
average_optimal_region_area_for_boundary /= number_of_boundary_cells;
average_optimal_region_area /= total_number_of_nonterminals;
average_distance_to_optimal_region /= number_of_boundary_cells;
output_file << "Total number of cells: " << total_number_of_nonterminals << endl;
output_file << "Number of boundary cells: " << number_of_boundary_cells << endl;
output_file << "Average optimal region area: " << average_optimal_region_area << endl;
output_file << "Average optimal region area for boundary cells: " << average_optimal_region_area_for_boundary << endl;
output_file << "A point-like optimal region: " << point_optimal_region << endl;
output_file << "Average distance to OR: " << average_distance_to_optimal_region << endl;
cout << endl;
cout << "Total number of cells: " << total_number_of_nonterminals << endl;
cout << "Number of boundary cells: " << number_of_boundary_cells << endl;
cout << "Average optimal region area: " << average_optimal_region_area << endl;
cout << "Average optimal region area for boundary cells: " << average_optimal_region_area_for_boundary << endl;
cout << "A point-like optimal region:" << point_optimal_region << endl;
cout << "Average distance to OR: " << average_distance_to_optimal_region << endl;
}
void displayInputStatistics(void)
{
//displayCellStatistics(design.cell_lib.cells;
displayNetStatistics();
//displayOptimalRegionStatistics();
}