forked from Maximilian-Winter/VirtualGameMaster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_api.py
753 lines (651 loc) · 31.2 KB
/
chat_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import json
from abc import ABC, abstractmethod
import requests
from groq import Groq
from openai import OpenAI
from ToolAgents import FunctionTool
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings, LlmStructuredOutputType
from llama_cpp_agent.providers import LlamaCppServerProvider, LlamaCppSamplingSettings
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.messages_formatter import get_predefined_messages_formatter, PromptMarkers, MessagesFormatter
from anthropic import Anthropic
from typing import Union, Optional, Any
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
from typing import List, Dict, Generator
def clean_history_messages(history_messages: List[dict]) -> List[dict]:
clean_messages = []
for msg in history_messages:
if "id" in msg:
msg.pop("id")
clean_messages.append(msg)
return clean_messages
class ChatAPISettings(ABC):
@abstractmethod
def to_dict(self):
pass
class ChatAPI(ABC):
@abstractmethod
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
pass
@abstractmethod
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
pass
@abstractmethod
def get_default_settings(self) -> ChatAPISettings:
pass
@abstractmethod
def get_current_settings(self) -> ChatAPISettings:
pass
class OpenAISettings(ChatAPISettings):
def __init__(self):
self.temperature = 0.4
self.top_p = 1
self.max_tokens = 1024
def to_dict(self):
return {
'temperature': self.temperature,
'top_p': self.top_p,
'max_tokens': self.max_tokens
}
class OpenAIChatAPI(ChatAPI):
def __init__(self, api_key: str, base_url: str, model: str):
self.client = OpenAI(api_key=api_key, base_url=base_url)
self.model = model
self.settings = OpenAISettings()
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
response = self.client.chat.completions.create(
model=self.model,
messages=clean_history_messages(messages),
max_tokens=self.settings.max_tokens,
temperature=self.settings.temperature if settings is None else settings.temperature,
top_p=self.settings.top_p if settings is None else settings.top_p
)
return response.choices[0].message.content
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
stream = self.client.chat.completions.create(
model=self.model,
messages=clean_history_messages(messages),
max_tokens=self.settings.max_tokens,
stream=True,
temperature=self.settings.temperature if settings is None else settings.temperature,
top_p=self.settings.top_p if settings is None else settings.top_p
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
yield chunk.choices[0].delta.content
def get_default_settings(self):
return OpenAISettings()
def get_current_settings(self):
return self.settings
class OpenRouterSettings(ChatAPISettings):
def __init__(self):
self.temperature = 1.0
self.top_p = 1.0
self.top_k = 0
self.frequency_penalty = 0.0
self.presence_penalty = 0.0
self.repetition_penalty = 1.0
self.min_p = 0.0
self.top_a = 0.0
self.seed = None
self.max_tokens = None
self.stop = []
def to_dict(self):
return {
'temperature': self.temperature,
'top_p': self.top_p,
'top_k': self.top_k,
'frequency_penalty': self.frequency_penalty,
'presence_penalty': self.presence_penalty,
'repetition_penalty': self.repetition_penalty,
'min_p': self.min_p,
'top_a': self.top_a,
'seed': self.seed,
'max_tokens': self.max_tokens,
'stop': self.stop
}
class OpenRouterAPI(ChatAPI):
def __init__(self, api_key: str, model: str):
self.api_key = api_key
self.model = model
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
self.settings = OpenRouterSettings()
def _prepare_request_body(self, messages: List[Dict[str, str]], stream: bool = False, settings=None) -> Dict:
body = {
"model": self.model,
"messages": clean_history_messages(messages),
"stream": stream,
"stop": self.settings.stop if settings is None else settings.stop,
"temperature": self.settings.temperature if settings is None else settings.temperature,
"top_p": self.settings.top_p if settings is None else settings.top_p,
"top_k": self.settings.top_k if settings is None else settings.top_k,
"frequency_penalty": self.settings.frequency_penalty if settings is None else settings.frequency_penalty,
"presence_penalty": self.settings.presence_penalty if settings is None else settings.presence_penalty,
"repetition_penalty": self.settings.repetition_penalty if settings is None else settings.repetition_penalty,
"min_p": self.settings.min_p if settings is None else settings.min_p,
"top_a": self.settings.top_a if settings is None else settings.top_a,
}
if self.settings.seed is not None or (settings is not None and settings.seed is not None):
body["seed"] = self.settings.seed if settings is None else settings.seed
if self.settings.max_tokens is not None or (settings is not None and settings.max_tokens is not None):
body["max_tokens"] = self.settings.max_tokens if settings is None else settings.max_tokens
return body
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
response = requests.post(
url=self.base_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json=self._prepare_request_body(messages, settings=settings)
)
return response.json()['choices'][0]['message']['content']
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
response = requests.post(
url=self.base_url,
headers={
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"Accept": "text/event-stream"
},
json=self._prepare_request_body(messages, stream=True, settings=settings),
stream=True
)
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:] # Remove 'data: ' prefix
if data != '[DONE]':
try:
chunk = json.loads(data)
if 'choices' in chunk and len(chunk['choices']) > 0:
content = chunk['choices'][0].get('delta', {}).get('content')
if content:
yield content
except json.JSONDecodeError:
print(f"Error decoding JSON: {data}")
def get_default_settings(self):
return OpenRouterSettings()
def get_current_settings(self):
return self.settings
class OpenRouterAPIPromptMode(ChatAPI):
def __init__(self, api_key: str, model: str, messages_formatter_type: MessagesFormatterType = None):
self.api_key = api_key
self.model = model
self.base_url = "https://openrouter.ai/api/v1/chat/completions"
self.settings = OpenRouterSettings()
if messages_formatter_type:
self.main_message_formatter = get_predefined_messages_formatter(messages_formatter_type)
else:
prompt_markers = {
Roles.system: PromptMarkers("""### Instructions:\n""", """\n\n"""),
Roles.user: PromptMarkers("""### Player:\n""", """\n\n"""),
Roles.assistant: PromptMarkers("""### Game Master:\n""", """\n\n"""),
Roles.tool: PromptMarkers("""### Function Tool:\n""", """\n\n"""),
}
self.main_message_formatter = MessagesFormatter("", prompt_markers, False, ["### Player:"], False)
def _prepare_request_body(self, messages: List[Dict[str, str]], stream: bool = False, settings=None) -> Dict:
prompt, _ = self.main_message_formatter.format_conversation(messages, Roles.assistant)
print(prompt)
body = {
"model": self.model,
"prompt": prompt,
"stream": stream,
"stop": self.main_message_formatter.default_stop_sequences,
"temperature": self.settings.temperature if settings is None else settings.temperature,
"top_p": self.settings.top_p if settings is None else settings.top_p,
"top_k": self.settings.top_k if settings is None else settings.top_k,
"frequency_penalty": self.settings.frequency_penalty if settings is None else settings.frequency_penalty,
"presence_penalty": self.settings.presence_penalty if settings is None else settings.presence_penalty,
"repetition_penalty": self.settings.repetition_penalty if settings is None else settings.repetition_penalty,
"min_p": self.settings.min_p if settings is None else settings.min_p,
"top_a": self.settings.top_a if settings is None else settings.top_a,
}
if self.settings.seed is not None or (settings is not None and settings.seed is not None):
body["seed"] = self.settings.seed if settings is None else settings.seed
if self.settings.max_tokens is not None or (settings is not None and settings.max_tokens is not None):
body["max_tokens"] = self.settings.max_tokens if settings is None else settings.max_tokens
return body
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
response = requests.post(
url=self.base_url,
headers={"Authorization": f"Bearer {self.api_key}"},
json=self._prepare_request_body(messages, settings=settings)
)
return response.json()['choices'][0]['text']
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
response = requests.post(
url=self.base_url,
headers={
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"Accept": "text/event-stream"
},
json=self._prepare_request_body(messages, stream=True, settings=settings),
stream=True
)
for line in response.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data = line[6:] # Remove 'data: ' prefix
if data != '[DONE]':
try:
chunk = json.loads(data)
if 'choices' in chunk and len(chunk['choices']) > 0:
content = chunk['choices'][0].get('text')
if content:
yield content
except json.JSONDecodeError:
print(f"Error decoding JSON: {data}")
def get_default_settings(self):
return OpenRouterSettings()
def get_current_settings(self):
return self.settings
class LlamaCppSettings(ChatAPISettings):
temperature: float = 0.3
top_k: int = 0
top_p: float = 1.0
min_p: float = 0.0
n_predict: int = -1
n_keep: int = 0
stream: bool = True
additional_stop_sequences: List[str] = None
tfs_z: float = 1.0
typical_p: float = 1.0
repeat_penalty: float = 1.1
repeat_last_n: int = -1
penalize_nl: bool = False
presence_penalty: float = 0.0
frequency_penalty: float = 0.0
penalty_prompt: Union[None, str, List[int]] = None
mirostat_mode: int = 0
mirostat_tau: float = 5.0
mirostat_eta: float = 0.1
cache_prompt: bool = True
seed: int = -1
ignore_eos: bool = False
samplers: List[str] = None
def to_dict(self) -> dict:
"""
Convert the settings to a dictionary.
Returns:
dict: The dictionary representation of the settings.
"""
return {
'temperature': self.temperature,
'top_k': self.top_k,
'top_p': self.top_p,
'min_p': self.min_p,
'n_predict': self.n_predict,
'n_keep': self.n_keep,
'stream': self.stream,
'additional_stop_sequences': self.additional_stop_sequences,
'tfs_z': self.tfs_z,
'typical_p': self.typical_p,
'repeat_penalty': self.repeat_penalty,
'repeat_last_n': self.repeat_last_n,
'penalize_nl': self.penalize_nl,
'presence_penalty': self.presence_penalty,
'frequency_penalty': self.frequency_penalty,
'penalty_prompt': self.penalty_prompt,
'mirostat_mode': self.mirostat_mode,
'mirostat_tau': self.mirostat_tau,
'mirostat_eta': self.mirostat_eta,
'cache_prompt': self.cache_prompt,
'seed': self.seed,
'ignore_eos': self.ignore_eos,
'samplers': self.samplers
}
class LlamaAgentProvider(ChatAPI):
def __init__(self, server_ip: str, api_key: str,
debug_output: bool = False):
self.provider = LlamaCppServerProvider(server_ip, api_key=api_key)
self.settings = LlamaCppSettings()
self.debug_output = debug_output
self.structured_settings = LlmStructuredOutputSettings(output_type=LlmStructuredOutputType.no_structured_output)
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
self.settings.stream = False
if settings is not None:
settings.stream = False
response = self.provider.create_chat_completion(clean_history_messages(messages), self.structured_settings,
LlamaCppSamplingSettings.load_from_dict(
self.settings.to_dict()) if settings is None else LlamaCppSamplingSettings.load_from_dict(
settings.to_dict()))
return response['choices'][0][
'message']['content']
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
self.settings.stream = True
if settings is not None:
settings.stream = True
for tok in self.provider.create_chat_completion(clean_history_messages(messages), self.structured_settings,
LlamaCppSamplingSettings.load_from_dict(
self.settings.to_dict()) if settings is None else LlamaCppSamplingSettings.load_from_dict(
settings.to_dict())):
if "content" in tok['choices'][0]['delta']:
text = tok['choices'][0]['delta']['content']
yield text
def get_default_settings(self):
return LlamaCppSettings
def get_current_settings(self):
return self.settings
class LlamaAgentProviderCustom(ChatAPI):
def __init__(self, server_ip: str, api_key: str, messages_formatter_type: MessagesFormatterType = None,
debug_output: bool = True):
self.provider = LlamaCppServerProvider(server_ip, api_key=api_key)
self.settings = self.provider.get_provider_default_settings()
self.debug_output = debug_output
messages_formatter_type = MessagesFormatterType.MISTRAL
if messages_formatter_type:
self.main_message_formatter = get_predefined_messages_formatter(messages_formatter_type)
else:
prompt_markers = {
Roles.system: PromptMarkers("""### System Instructions:\n""", """\n\n"""),
Roles.user: PromptMarkers("""### Player:\n""", """\n\n"""),
Roles.assistant: PromptMarkers("""### Game Master:\n""", """\n\n"""),
Roles.tool: PromptMarkers("""### Function Tool:\n""", """\n\n"""),
}
self.main_message_formatter = MessagesFormatter("", prompt_markers, False, ["### Player:"], False)
self.structured_settings = LlmStructuredOutputSettings(output_type=LlmStructuredOutputType.no_structured_output)
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
prompt, _ = self.main_message_formatter.format_conversation(messages=messages, response_role=Roles.assistant)
self.settings.stream = False
if settings is not None:
settings.stream = False
self.settings.additional_stop_sequences = self.main_message_formatter.default_stop_sequences
if settings is not None:
settings.additional_stop_sequences = self.main_message_formatter.default_stop_sequences
if self.debug_output:
print(prompt)
response = self.provider.create_completion(prompt, self.structured_settings,
self.settings if settings is None else settings, "<s>")
return response['choices'][0]['text']
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
prompt, _ = self.main_message_formatter.format_conversation(messages=messages, response_role=Roles.assistant)
self.settings.stream = True
if settings is not None:
settings.stream = True
self.settings.additional_stop_sequences = self.main_message_formatter.default_stop_sequences
if settings is not None:
settings.additional_stop_sequences = self.main_message_formatter.default_stop_sequences
if self.debug_output:
print(prompt)
for tok in self.provider.create_completion(prompt, self.structured_settings,
self.settings if settings is None else settings, "<s>"):
text = tok['choices'][0]['text']
yield text
def get_default_settings(self):
return self.provider.get_provider_default_settings()
def get_current_settings(self):
return self.settings
class AnthropicSettings(ChatAPISettings):
def __init__(self):
self.temperature = 0.7
self.top_p = 1.0
self.top_k = 0.0
self.max_tokens = 1024
self.stop_sequences = []
self.cache_system_prompt = True
self.cache_user_messages = False
self.cache_recent_messages = 10
def to_dict(self):
return {
'temperature': self.temperature,
'top_p': self.top_p,
'top_k': self.top_k,
'max_tokens': self.max_tokens,
'stop_sequences': self.stop_sequences,
'cache_system_prompt': self.cache_system_prompt,
'cache_user_messages': self.cache_user_messages,
'cache_recent_messages': self.cache_recent_messages
}
class AnthropicChatAPI(ChatAPI):
def __init__(self, api_key: str, model: str):
self.client = Anthropic(api_key=api_key)
self.model = model
self.settings = AnthropicSettings()
def prepare_messages(self, settings: AnthropicSettings, messages: List[Dict[str, str]]) -> tuple:
system_message = None
other_messages = []
cleaned_messages = clean_history_messages(messages)
for i, message in enumerate(cleaned_messages):
if message['role'] == 'system':
system_message = [
{"type": "text", "text": message['content']}
]
if settings.cache_system_prompt:
system_message[0]["cache_control"] = {"type": "ephemeral"}
else:
msg = {
'role': message['role'],
'content': [
{
"type": "text",
"text": message["content"]
}
],
}
if settings.cache_user_messages:
if i >= len(cleaned_messages) - settings.cache_recent_messages:
msg["content"][0]["cache_control"] = {"type": "ephemeral"}
other_messages.append(msg)
return system_message, other_messages
def get_response(self, messages: List[Dict[str, str]], settings=None,
tools: Optional[List[FunctionTool]] = None) -> str:
system, other_messages = self.prepare_messages(self.settings if settings is None else settings, messages)
anthropic_tools = [tool.to_anthropic_tool() for tool in tools] if tools else None
response = self.client.messages.create(
extra_headers={
"anthropic-beta": "prompt-caching-2024-07-31"
} if self.settings.cache_system_prompt or (settings is not None and settings.cache_system_prompt) else None,
model=self.model,
system=system if system else [],
messages=other_messages,
temperature=self.settings.temperature if settings is None else settings.temperature,
top_p=self.settings.top_p if settings is None else settings.top_p,
top_k=self.settings.top_k if settings is None else settings.top_k,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
stop_sequences=self.settings.stop_sequences if settings is None else settings.stop_sequences,
tools=anthropic_tools
)
if tools and (response.content[0].type == 'tool_use' or (
len(response.content) > 1 and response.content[1].type == 'tool_use')):
if response.content[0].type == 'tool_use':
return json.dumps({
"content": None,
"tool_calls": [{
"function": {
"id": response.content[0].id,
"name": response.content[0].name,
"arguments": response.content[0].input
}
}]
})
elif response.content[1].type == 'tool_use':
return json.dumps({
"content": response.content[0].text,
"tool_calls": [{
"function": {
"id": response.content[1].id,
"name": response.content[1].name,
"arguments": response.content[1].input
}
}]
})
return response.content[0].text
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None,
tools: Optional[List[FunctionTool]] = None) -> Generator[str, None, None]:
system, other_messages = self.prepare_messages(self.settings if settings is None else settings, messages)
anthropic_tools = [tool.to_anthropic_tool() for tool in tools] if tools else None
stream = self.client.messages.create(
extra_headers={
"anthropic-beta": "prompt-caching-2024-07-31"
} if self.settings.cache_system_prompt or (settings is not None and settings.cache_system_prompt) else None,
model=self.model,
system=system if system else [],
messages=other_messages,
stream=True,
temperature=self.settings.temperature if settings is None else settings.temperature,
top_p=self.settings.top_p if settings is None else settings.top_p,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
tools=anthropic_tools if anthropic_tools else []
)
current_tool_call = None
content = ""
for chunk in stream:
if chunk.type == "content_block_start":
if chunk.content_block.type == "tool_use":
current_tool_call = {
"function": {
"id": chunk.content_block.id,
"name": chunk.content_block.name,
"arguments": ""
}
}
elif chunk.type == "content_block_delta":
if chunk.delta.type == "text_delta":
content += chunk.delta.text
yield chunk.delta.text
elif chunk.delta.type == "input_json_delta":
if current_tool_call:
current_tool_call["function"]["arguments"] += chunk.delta.partial_json
elif chunk.type == "content_block_stop":
if current_tool_call:
yield json.dumps({
"content": content if len(content) > 0 else None,
"tool_calls": [current_tool_call]
})
current_tool_call = None
def generate_tool_use_message(self, content: str, tool_call_id: str, tool_name: str, tool_args: str) -> Dict[
str, Any]:
if content is None or len(content) == 0:
return {
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": tool_call_id,
"name": tool_name,
"input": json.loads(tool_args) if isinstance(tool_args, str) else tool_args
}
]
}
else:
return {
"role": "assistant",
"content": [
{
"type": "text",
"text": content
},
{
"type": "tool_use",
"id": tool_call_id,
"name": tool_name,
"input": json.loads(tool_args) if isinstance(tool_args, str) else tool_args
}
]
}
def generate_tool_response_message(self, tool_call_id: str, tool_name: str, tool_response: str) -> Dict[str, Any]:
return {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": tool_call_id,
"content": tool_response
}
]
}
def get_default_settings(self):
return AnthropicSettings()
def get_current_settings(self):
return self.settings
class GroqSettings(ChatAPISettings):
def __init__(self):
self.temperature = 0.5
self.max_tokens = 1024
self.top_p = 1
self.stop = None
def to_dict(self):
return {
'temperature': self.temperature,
'max_tokens': self.max_tokens,
'top_p': self.top_p,
'stop': self.stop
}
class GroqChatAPI(ChatAPI):
def __init__(self, api_key: str, model: str):
self.client = Groq(api_key=api_key)
self.model = model
self.settings = GroqSettings()
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
chat_completion = self.client.chat.completions.create(
messages=clean_history_messages(messages),
model=self.model,
temperature=self.settings.temperature if settings is None else settings.temperature,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
top_p=self.settings.top_p if settings is None else settings.top_p,
stop=self.settings.stop if settings is None else settings.stop,
stream=False
)
return chat_completion.choices[0].message.content
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
stream = self.client.chat.completions.create(
messages=clean_history_messages(messages),
model=self.model,
temperature=self.settings.temperature if settings is None else settings.temperature,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
top_p=self.settings.top_p if settings is None else settings.top_p,
stop=self.settings.stop if settings is None else settings.stop,
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
yield chunk.choices[0].delta.content
def get_default_settings(self):
return GroqSettings()
def get_current_settings(self):
return self.settings
class MistralSettings(ChatAPISettings):
def __init__(self):
self.temperature = 0.7
self.max_tokens = 1024
self.top_p = 1.0
def to_dict(self):
return {
'temperature': self.temperature,
'max_tokens': self.max_tokens,
'top_p': self.top_p
}
class MistralChatAPI(ChatAPI):
def __init__(self, api_key: str, model: str):
self.client = MistralClient(api_key=api_key)
self.model = model
self.settings = MistralSettings()
def _convert_messages(self, messages: List[Dict[str, str]]) -> List[ChatMessage]:
return [ChatMessage(role=msg['role'], content=msg['content']) for msg in messages]
def get_response(self, messages: List[Dict[str, str]], settings=None) -> str:
chat_response = self.client.chat(
model=self.model,
messages=self._convert_messages(messages),
temperature=self.settings.temperature if settings is None else settings.temperature,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
top_p=self.settings.top_p if settings is None else settings.top_p
)
return chat_response.choices[0].message.content
def get_streaming_response(self, messages: List[Dict[str, str]], settings=None) -> Generator[str, None, None]:
stream_response = self.client.chat_stream(
model=self.model,
messages=self._convert_messages(messages),
temperature=self.settings.temperature if settings is None else settings.temperature,
max_tokens=self.settings.max_tokens if settings is None else settings.max_tokens,
top_p=self.settings.top_p if settings is None else settings.top_p
)
for chunk in stream_response:
if chunk.choices[0].delta.content is not None:
yield chunk.choices[0].delta.content
def get_default_settings(self):
return MistralSettings()
def get_current_settings(self):
return self.settings