-
Notifications
You must be signed in to change notification settings - Fork 7
/
utils.py
310 lines (191 loc) · 8.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from networkit import *
import networkx as nx
from scipy.linalg import block_diag
from scipy.sparse import csr_matrix
from scipy.stats import kendalltau
import pickle
import scipy.sparse as sp
import copy
import random
import numpy as np
import torch
def get_out_edges(g_nkit,node_sequence):
global all_out_dict
all_out_dict = dict()
for all_n in node_sequence:
all_out_dict[all_n]=set()
for all_n in node_sequence:
_ = g_nkit.forEdgesOf(all_n,nkit_outedges)
return all_out_dict
def get_in_edges(g_nkit,node_sequence):
global all_in_dict
all_in_dict = dict()
for all_n in node_sequence:
all_in_dict[all_n]=set()
for all_n in node_sequence:
_ = g_nkit.forInEdgesOf(all_n,nkit_inedges)
return all_in_dict
def nkit_inedges(u,v,weight,edgeid):
all_in_dict[u].add(v)
def nkit_outedges(u,v,weight,edgeid):
all_out_dict[u].add(v)
def nx2nkit(g_nx):
node_num = g_nx.number_of_nodes()
g_nkit = Graph(directed=True)
for i in range(node_num):
g_nkit.addNode()
for e1,e2 in g_nx.edges():
g_nkit.addEdge(e1,e2)
assert g_nx.number_of_nodes()==g_nkit.numberOfNodes(),"Number of nodes not matching"
assert g_nx.number_of_edges()==g_nkit.numberOfEdges(),"Number of edges not matching"
return g_nkit
def clique_check(index,node_sequence,all_out_dict,all_in_dict):
node = node_sequence[index]
in_nodes = all_in_dict[node]
out_nodes = all_out_dict[node]
for in_n in in_nodes:
tmp_out_nodes = set(out_nodes)
tmp_out_nodes.discard(in_n)
if tmp_out_nodes.issubset(all_out_dict[in_n]) == False:
return False
return True
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def graph_to_adj_bet(list_graph,list_n_sequence,list_node_num,model_size):
list_adjacency = list()
list_adjacency_t = list()
list_degree = list()
max_nodes = model_size
zero_list = list()
list_rand_pos = list()
list_sparse_diag = list()
for i in range(len(list_graph)):
print(f"Processing graphs: {i+1}/{len(list_graph)}",end='\r')
graph = list_graph[i]
edges = list(graph.edges())
graph = nx.MultiDiGraph()
graph.add_edges_from(edges)
#self_loops = [i for i in graph.selfloop_edges()]
self_loops = list(nx.selfloop_edges(graph))
graph.remove_edges_from(self_loops)
node_sequence = list_n_sequence[i]
adj_temp = nx.adjacency_matrix(graph,nodelist=node_sequence)
node_num = list_node_num[i]
adj_temp_t = adj_temp.transpose()
arr_temp1 = np.sum(adj_temp,axis=1)
arr_temp2 = np.sum(adj_temp_t,axis=1)
arr_multi = np.multiply(arr_temp1,arr_temp2)
arr_multi = np.where(arr_multi>0,1.0,0.0)
degree_arr = arr_multi
non_zero_ind = np.nonzero(degree_arr.flatten())
non_zero_ind = non_zero_ind[0]
g_nkit = nx2nkit(graph)
in_n_seq = [node_sequence[nz_ind] for nz_ind in non_zero_ind]
all_out_dict = get_out_edges(g_nkit,node_sequence)
all_in_dict = get_in_edges(g_nkit,in_n_seq)
for index in non_zero_ind:
is_zero = clique_check(index,node_sequence,all_out_dict,all_in_dict)
if is_zero == True:
degree_arr[index,0]=0.0
adj_temp = adj_temp.multiply(csr_matrix(degree_arr))
adj_temp_t = adj_temp_t.multiply(csr_matrix(degree_arr))
rand_pos = 0
top_mat = csr_matrix((rand_pos,rand_pos))
remain_ind = max_nodes - rand_pos - node_num
bottom_mat = csr_matrix((remain_ind,remain_ind))
list_rand_pos.append(rand_pos)
#remain_ind = max_nodes - node_num
#small_arr = csr_matrix((remain_ind,remain_ind))
#adding extra padding to adj mat,normalise and save as torch tensor
adj_temp = csr_matrix(adj_temp)
adj_mat = sp.block_diag((top_mat,adj_temp,bottom_mat))
adj_temp_t = csr_matrix(adj_temp_t)
adj_mat_t = sp.block_diag((top_mat,adj_temp_t,bottom_mat))
adj_mat = sparse_mx_to_torch_sparse_tensor(adj_mat)
list_adjacency.append(adj_mat)
adj_mat_t = sparse_mx_to_torch_sparse_tensor(adj_mat_t)
list_adjacency_t.append(adj_mat_t)
print("")
return list_adjacency,list_adjacency_t
def graph_to_adj_close(list_graph,list_n_sequence,list_node_num,model_size,print_time=False):
list_adjacency = list()
list_adjacency_mod = list()
list_degree = list()
max_nodes = model_size
zero_list = list()
list_rand_pos = list()
list_sparse_diag = list()
for i in range(len(list_graph)):
print(f"Processing graphs: {i+1}/{len(list_graph)}",end='\r')
graph = list_graph[i]
edges = list(graph.edges())
graph = nx.MultiDiGraph()
graph.add_edges_from(edges)
self_loops = list(nx.selfloop_edges(graph))
graph.remove_edges_from(self_loops)
node_sequence = list_n_sequence[i]
adj_temp = nx.adjacency_matrix(graph,nodelist=node_sequence)
node_num = list_node_num[i]
adj_temp_t = adj_temp.transpose()
arr_temp1 = np.sum(adj_temp,axis=1)
arr_temp2 = np.sum(adj_temp_t,axis=1)
arr_multi = np.multiply(arr_temp1,arr_temp2)
arr_multi = np.where(arr_multi>0,1.0,0.0)
degree_arr = arr_multi
non_zero_ind = np.nonzero(degree_arr.flatten())
non_zero_ind = non_zero_ind[0]
g_nkit = nx2nkit(graph)
in_n_seq = [node_sequence[nz_ind] for nz_ind in non_zero_ind]
all_out_dict = get_out_edges(g_nkit,node_sequence)
all_in_dict = get_in_edges(g_nkit,in_n_seq)
for index in non_zero_ind:
is_zero = clique_check(index,node_sequence,all_out_dict,all_in_dict)
if is_zero == True:
degree_arr[index,0]=0.0
#modify the in-degree matrix for different layers
degree_arr = degree_arr.reshape(1,node_num)
#for out_degree
adj_temp_mod = adj_temp.multiply(csr_matrix(degree_arr))
rand_pos = 0
top_mat = csr_matrix((rand_pos,rand_pos))
remain_ind = max_nodes - rand_pos - node_num
bottom_mat = csr_matrix((remain_ind,remain_ind))
list_rand_pos.append(rand_pos)
#remain_ind = max_nodes - node_num
#small_arr = csr_matrix((remain_ind,remain_ind))
#adding extra padding to adj mat,normalise and save as torch tensor
adj_temp = csr_matrix(adj_temp)
adj_mat = sp.block_diag((top_mat,adj_temp,bottom_mat))
adj_temp_mod = csr_matrix(adj_temp_mod)
adj_mat_mod = sp.block_diag((top_mat,adj_temp_mod,bottom_mat))
adj_mat = sparse_mx_to_torch_sparse_tensor(adj_mat)
list_adjacency.append(adj_mat)
adj_mat_mod = sparse_mx_to_torch_sparse_tensor(adj_mat_mod)
list_adjacency_mod.append(adj_mat_mod)
print("")
return list_adjacency,list_adjacency_mod
def ranking_correlation(y_out,true_val,node_num,model_size):
y_out = y_out.reshape((model_size))
true_val = true_val.reshape((model_size))
predict_arr = y_out.cpu().detach().numpy()
true_arr = true_val.cpu().detach().numpy()
kt,_ = kendalltau(predict_arr[:node_num],true_arr[:node_num])
return kt
def loss_cal(y_out,true_val,num_nodes,device,model_size):
y_out = y_out.reshape((model_size))
true_val = true_val.reshape((model_size))
_,order_y_true = torch.sort(-true_val[:num_nodes])
sample_num = num_nodes*20
ind_1 = torch.randint(0,num_nodes,(sample_num,)).long().to(device)
ind_2 = torch.randint(0,num_nodes,(sample_num,)).long().to(device)
rank_measure=torch.sign(-1*(ind_1-ind_2)).float()
input_arr1 = y_out[:num_nodes][order_y_true[ind_1]].to(device)
input_arr2 = y_out[:num_nodes][order_y_true[ind_2]].to(device)
loss_rank = torch.nn.MarginRankingLoss(margin=1.0).forward(input_arr1,input_arr2,rank_measure)
return loss_rank