forked from mahmoodlab/CLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
139 lines (111 loc) · 4.42 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import torch.nn as nn
from math import floor
import os
import random
import numpy as np
import pdb
import time
from datasets.dataset_h5 import Dataset_All_Bags, Whole_Slide_Bag
from torch.utils.data import DataLoader
from models.resnet_custom import resnet50_baseline
import argparse
from utils.utils import print_network, collate_features
from PIL import Image
import h5py
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def save_hdf5(output_dir, asset_dict, mode='a'):
file = h5py.File(output_dir, mode)
for key, val in asset_dict.items():
data_shape = val.shape
if key not in file:
data_type = val.dtype
chunk_shape = (1, ) + data_shape[1:]
maxshape = (None, ) + data_shape[1:]
dset = file.create_dataset(key, shape=data_shape, maxshape=maxshape, chunks=chunk_shape, dtype=data_type)
dset[:] = val
else:
dset = file[key]
dset.resize(len(dset) + data_shape[0], axis=0)
dset[-data_shape[0]:] = val
file.close()
return output_dir
def compute_w_loader(file_path, output_path, model, batch_size = 8, verbose = 0,
print_every=20, pretrained=True, target_patch_size=-1):
"""
args:
file_path: directory of bag (.h5 file)
output_path: directory to save computed features (.h5 file)
model: pytorch model
batch_size: batch_size for computing features in batches
verbose: level of feedback
pretrained: use weights pretrained on imagenet
"""
dataset = Whole_Slide_Bag(file_path=file_path, pretrained=pretrained,
target_patch_size=target_patch_size)
x, y = dataset[0]
kwargs = {'num_workers': 4, 'pin_memory': True} if device.type == "cuda" else {}
loader = DataLoader(dataset=dataset, batch_size=batch_size, **kwargs, collate_fn=collate_features)
if verbose > 0:
print('processing {}: total of {} batches'.format(file_path,len(loader)))
mode = 'w'
for count, (batch, coords) in enumerate(loader):
with torch.no_grad():
if count % print_every == 0:
print('batch {}/{}, {} files processed'.format(count, len(loader), count * batch_size))
batch = batch.to(device, non_blocking=True)
mini_bs = coords.shape[0]
features = model(batch)
features = features.cpu().numpy()
asset_dict = {'features': features, 'coords': coords}
save_hdf5(output_path, asset_dict, mode=mode)
mode = 'a'
return output_path
parser = argparse.ArgumentParser(description='Feature Extraction')
parser.add_argument('--data_dir', type=str)
parser.add_argument('--csv_path', type=str)
parser.add_argument('--feat_dir', type=str)
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--no_auto_skip', default=False, action='store_true')
parser.add_argument('--target_patch_size', type=int, default=-1,
help='the desired size of patches for optional scaling before feature embedding')
args = parser.parse_args()
if __name__ == '__main__':
print('initializing dataset')
csv_path = args.csv_path
bags_dataset = Dataset_All_Bags(args.data_dir, csv_path)
os.makedirs(args.feat_dir, exist_ok=True)
dest_files = os.listdir(args.feat_dir)
print('loading model checkpoint')
model = resnet50_baseline(pretrained=True)
model = model.to(device)
# print_network(model)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.eval()
total = len(bags_dataset)
for bag_candidate_idx in range(total):
bag_candidate = bags_dataset[bag_candidate_idx]
bag_name = os.path.basename(os.path.normpath(bag_candidate))
if '.h5' in bag_candidate:
print('\nprogress: {}/{}'.format(bag_candidate_idx, total))
print(bag_name)
if not args.no_auto_skip and bag_name in dest_files:
print('skipped {}'.format(bag_name))
continue
output_path = os.path.join(args.feat_dir, bag_name)
file_path = bag_candidate
time_start = time.time()
output_file_path = compute_w_loader(file_path, output_path,
model = model, batch_size = args.batch_size,
verbose = 1, print_every = 20,
target_patch_size=args.target_patch_size)
time_elapsed = time.time() - time_start
print('\ncomputing features for {} took {} s'.format(output_file_path, time_elapsed))
file = h5py.File(output_file_path, "r")
features = file['features'][:]
print('features size: ', features.shape)
print('coordinates size: ', file['coords'].shape)
features = torch.from_numpy(features)
bag_base, _ = os.path.splitext(bag_name)
torch.save(features, os.path.join(args.feat_dir, bag_base+'.pt'))