-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathquiz_kit.py
157 lines (136 loc) · 4.75 KB
/
quiz_kit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas as pd
import numpy as np
from scipy.optimize import minimize
from scipy.stats import norm
def get_hfi_returns():
"""
Load and format the EDHEC Hedge Fund Index Returns
"""
hfi = pd.read_csv("data/edhec-hedgefundindices.csv",
header=0, index_col=0, parse_dates=True)
hfi = hfi/100
hfi.index = hfi.index.to_period('M')
return hfi
def get_ind_returns():
"""
Load and format the Ken French 30 Industry Portfolios Value Weighted Monthly Returns
"""
ind = pd.read_csv("data/ind30_m_vw_rets.csv", header=0, index_col=0)/100
ind.index = pd.to_datetime(ind.index, format="%Y%m").to_period('M')
ind.columns = ind.columns.str.strip()
return ind
def annualize_rets(r, periods_per_year):
"""
Annualizes a set of returns
We should infer the periods per year
but that is currently left as an exercise
to the reader :-)
"""
compounded_growth = (1+r).prod()
n_periods = r.shape[0]
return compounded_growth**(periods_per_year/n_periods)-1
def annualize_vol(r, periods_per_year):
"""
Annualizes the vol of a set of returns
We should infer the periods per year
but that is currently left as an exercise
to the reader :-)
"""
return r.std()*(periods_per_year**0.5)
def skewness(r):
"""
Alternative to scipy.stats.skew()
Computes the skewness of the supplied Series or DataFrame
Returns a float or a Series
"""
demeaned_r = r - r.mean()
# use the population standard deviation, so set dof=0
sigma_r = r.std(ddof=0)
exp = (demeaned_r**3).mean()
return exp/sigma_r**3
def kurtosis(r):
"""
Alternative to scipy.stats.kurtosis()
Computes the kurtosis of the supplied Series or DataFrame
Returns a float or a Series
"""
demeaned_r = r - r.mean()
# use the population standard deviation, so set dof=0
sigma_r = r.std(ddof=0)
exp = (demeaned_r**4).mean()
return exp/sigma_r**4
def var_historic(r, level=5):
"""
Returns the historic Value at Risk at a specified level
i.e. returns the number such that "level" percent of the returns
fall below that number, and the (100-level) percent are above
"""
if isinstance(r, pd.DataFrame):
return r.aggregate(var_historic, level=level)
elif isinstance(r, pd.Series):
return -np.percentile(r, level)
else:
raise TypeError("Expected r to be a Series or DataFrame")
def var_gaussian(r, level=5, modified=False):
"""
Returns the Parametric Gauusian VaR of a Series or DataFrame
If "modified" is True, then the modified VaR is returned,
using the Cornish-Fisher modification
"""
# compute the Z score assuming it was Gaussian
z = norm.ppf(level/100)
if modified:
# modify the Z score based on observed skewness and kurtosis
s = skewness(r)
k = kurtosis(r)
z = (z +
(z**2 - 1)*s/6 +
(z**3 -3*z)*(k-3)/24 -
(2*z**3 - 5*z)*(s**2)/36
)
return -(r.mean() + z*r.std(ddof=0))
def portfolio_return(weights, returns):
"""
Computes the return on a portfolio from constituent returns and weights
weights are a numpy array or Nx1 matrix and returns are a numpy array or Nx1 matrix
"""
return weights.T @ returns
def portfolio_vol(weights, covmat):
"""
Computes the vol of a portfolio from a covariance matrix and constituent weights
weights are a numpy array or N x 1 maxtrix and covmat is an N x N matrix
"""
return (weights.T @ covmat @ weights)**0.5
def msr(riskfree_rate, er, cov):
"""
Returns the weights of the portfolio that gives you the maximum sharpe ratio
given the riskfree rate and expected returns and a covariance matrix
"""
n = er.shape[0]
init_guess = np.repeat(1 / n, n)
bounds = ((0.0, 1.0),) * n # an N-tuple of 2-tuples!
# construct the constraints
weights_sum_to_1 = {'type': 'eq',
'fun': lambda weights: np.sum(weights) - 1
}
def neg_sharpe(weights, riskfree_rate, er, cov):
"""
Returns the negative of the sharpe ratio
of the given portfolio
"""
r = portfolio_return(weights, er)
vol = portfolio_vol(weights, cov)
return -(r - riskfree_rate) / vol
weights = minimize(neg_sharpe, init_guess,
args=(riskfree_rate, er, cov), method='SLSQP',
options={'disp': False},
constraints=(weights_sum_to_1,),
bounds=bounds)
return weights.x
def gmv(cov):
"""
Returns the weights of the Global Minimum Volatility portfolio
given a covariance matrix
"""
n = cov.shape[0]
return msr(0, np.repeat(1, n), cov)