sources
- tiss page (most up to date): https://tiss.tuwien.ac.at/curriculum/public/curriculum.xhtml?&key=67853&locale=en
- regulatory legal document (in force since october 2024): https://www.tuwien.at/fileadmin/Assets/dienstleister/studienabteilung/MSc_Studienplaene_2024/Masterstudium_Data_Science_2024.pdf
about the curriculum
- 120 ECTS in total
- lehrveranstaltung
$\in$ modul$\in$ prüfungsfach - a "modul" can either be a "pflichtmodul" (mandatory) or a "wahlmodul" (elective)
- wahlmodul:
- courses must be chosen from "schlüsselbereiche SB" (specialization areas)
- each specialization can have 6-24 ECTS
- you must pick at least 2 specializations, each made of a "core" and an "extension" part:
- the "core" part has 2 courses (6 ECTS in total) that you must do together, as a prerequisite for the "extension" part
- the "extension" part has an arbitrary number of courses, that you're allowed to do 18 ECTS from at most
- once you're finished with all courses + your thesis + the final seminar presentation of your thesis you're eligible for the defense
ECTS | |
---|---|
Semester 1 | |
VU Data-oriented Programming Paradigms (fds/fd) | 3.0 |
VU Experiment Design for Data Science (fds/fd) | 3.0 |
VU Advanced Methods for Regression and Classification (mls/fd) | 4.5 |
VU Machine Learning (mls/fd) | 4.5 |
VU Semantic Systems (vast/fd) | 3.0 |
VU Interdisciplinary Lecture Series on Data Science (dsa) | 1.0 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 19.0 |
Semester 2 | |
VU Statistical Computing (fds/fd) | 3.0 |
VU Advanced Database Systems (bdhpc/fd) | 6.0 |
VU Data-intensive Computing (bdhpc/fd) | 3.0 |
VO Information Visualization (vast/fd) | 3.0 |
VO Cognitive Foundations of Visualization (vast/fd) | 3.0 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 18.0 |
Semester 3 (Project) | |
PR Interdisciplinary Project in Data Science (dsa) | 5.0 |
VU Domain-Specific Lectures in Data Science (dsa) [electives] | 3.0 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 8.0 |
Electives (at least 2 modules) | |
(a) FDS module | |
├── VU Data Acquisition and Survey Methods (core) | 3.0 |
├── VO Data Stewardship (core) | 3.0 |
└── ... extensions | ≤18.0 |
(b) MLS module | |
├── VU Recommender Systems (core) | 3.0 |
├── VU Statistical Simulation and Computer Intensive Methods (core) | 3.0 |
└── ... extensions | ≤18.0 |
(c) BDHPC module | |
├── VU Basics of Parallel Computing (core) | 3.0 |
├── VU Efficient Programs (core) | 3.0 |
└── ... extensions | ≤18.0 |
(d) VAST module | |
├── VU Advanced Information Retrieval (core) | 3.0 |
├── UE Design and Evaluation of Visualisations (core) | 3.0 |
└── ... extensions | ≤18.0 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 36.0 |
Free electives, transferable skills | |
… pick from course catalogue | 9.0 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 9.0 |
Thesis | |
SE Seminar for Master Students in Data Science (multiple terms) | 1.5 |
Thesis, Diploma thesis | 27.0 |
Final exam / Defense, Final board exam | 1.5 |
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | Σ 30.0 |
ECTS | |
---|---|
FDS module | |
VU Advanced Cryptography | 6.0 |
VU Communicating Data | 3.0 |
VU Data Center Operations | 3.0 |
UE Data Stewardship | 3.0 |
VU Computational Social Science | 3.0 |
VU Digital Humanism | 3.0 |
VU Internet Security | 3.0 |
VU Organizational Aspects of IT-Security | 3.0 |
VU Software Security | 3.0 |
VU Sustainability in Computer Science | 3.0 |
VU Systems and Applications Security | 6.0 |
VU User Research Methods | 3.0 |
PR User Research Methods | 3.0 |
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | |
MLS module | |
VU Advanced Learning Methods | 3.0 |
VU Advanced Modeling and Simulation | 3.0 |
VU Advanced Reinforcement Learning | 3.0 |
VU AI/ML in the Era of Climate Change | 4.0 |
VU AKNUM Reinforcement Learning | 6.0 |
VU Algorithmic Social Choice | 6.0 |
VU Applied Deep Learning | 3.0 |
VO Bayesian Statistics | 3.0 |
UE Bayesian Statistics | 2.0 |
VU Bayesian Statistics | 5.0 |
VU Business Intelligence | 6.0 |
VU Crypto Asset Analytics | 3.0 |
VU Deep Learning for Visual Computing | 3.0 |
VU General Regression Models | 5.0 |
VO General Regression Models | 3.0 |
UE General Regression Models | 2.0 |
VU Generative AI | 3.0 |
VU Intelligent Audio and Music Analysis | 4.5 |
VO Introduction to Statistical Inference | 4.5 |
UE Introduction to Statistical Inference | 2.0 |
VU Machine Learning for Visual Computing | 4.5 |
VU Mathematical Programming | 3.0 |
VU Modeling and Simulation | 3.0 |
VU Modelling and Simulation in Health Technology Assessment | 3.0 |
VO Multivariate Statistics | 4.5 |
UE Multivariate Statistics | 1.5 |
VU Probabilistic Programming and AI | 6.0 |
VU Problem Solving and Search in Artificial Intelligence | 3.0 |
VU Security, Privacy and Explainability in Machine Learning | 3.0 |
VU Self-Organizing Systems | 4.5 |
VU Similarity Modeling 1 | 3.0 |
VU Similarity Modeling 2 | 3.0 |
VU Social Network Analysis | 3.0 |
VU Theoretical Foundations and Research Topics in Machine Learning | 3.0 |
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | |
BDHPC module | |
VU Algorithmic Geometry | 4.5 |
VU Algorithmics | 6.0 |
VO Analysis 2 | 3.0 |
UE Analysis 2 | 4.5 |
VU Approximation Algorithms | 3.0 |
VU Complexity Analysis | 3.0 |
VU Database Theory | 3.0 |
VU Fixed-Parameter Algorithms and Complexity | 4.5 |
VU Frontiers of Algorithms and Complexity | 3.0 |
VU GPU Architectures and Computing | 6.0 |
VU Graph Drawing Algorithms | 4.5 |
VU Hands-On Cloud Native | 6.0 |
VU Heuristic Optimization Techniques | 4.5 |
VU High Performance Computing | 4.5 |
VO Nonlinear Optimization | 3.0 |
UE Nonlinear Optimization | 2.0 |
VU Optimization in Transport and Logistics | 3.0 |
VU Structural Decompositions and Algorithms | 3.0 |
VU Advanced Multiprocessor Programming | 4.5 |
VU Randomized Algorithms | 3.0 |
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– | |
VAST module | |
VO Deductive Databases | 3.0 |
VU Description Logics and Ontologies | 3.0 |
VU Document Analysis | 3.0 |
UE Information Visualization | 1.5 |
VU KBS for Business Informatics | 6.0 |
VU Knowledge-based Systems | 6.0 |
VU Knowledge Graphs | 3.0 |
VO Medical Image Processing | 3.0 |
UE Medical Image Processing | 3.0 |
VU Natural Language Processing and Information Extraction | 3.0 |
VO Processing of Declarative Knowledge | 3.0 |
VU Research Topics in Natural Language Processing | 3.0 |
VU Real-time Visualization | 3.0 |
VU Semantic Technologies | 3.0 |
VU Semi-Automatic Information and Knowledge Systems | 3.0 |
VU Visual Data Science | 3.0 |
VU Visualization 2 | 4.5 |