-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
252 lines (211 loc) · 7.84 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from tensorflow.keras.preprocessing.image import load_img
import tensorflow as tf
#Import custom modules
from utils.cam_utils import get_img_array, get_superimposed_image, gen_cam
from utils.load_utils import init_models, create_data_generator
from utils.eval_utils import evaluate, cost_compute
#Import other required modules
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
import cv2
#Define Constants
BATCH_SIZE = 4
NUM_CLASSES = 199
FONT_SIZE = 10
DPI = 300
#Set model paths
MODEL_PATH = 'models/'
#SET DATA PATHS
MAIN_DATA_DIR = "ds/"
TRAIN_DATA_DIR = MAIN_DATA_DIR + "train/"
TEST_DATA_DIR = MAIN_DATA_DIR + "test/"
VALIDATION_DATA_DIR = MAIN_DATA_DIR + "val/"
#Input Modes
MODES = ['IMAGE MODE', 'VIDEO MODE']
#Save Figure Function
def savefigure(directory, fig_name):
if not os.path.exists(directory):
os.makedirs(directory)
plt.savefig(directory + '/' + fig_name + '.tiff', bbox_inches='tight', dpi=DPI, format='tiff')
#Create {index:classs_name} dictionary
def index_class_dict():
file_names = os.listdir('ds/test/')
file_names = sorted(file_names)
index_class = {}
for i in range(len(file_names)):
index_class[i] = file_names[i]
return index_class
#Softmax function
def softmax(arr):
for i in range(len(arr)):
ex =np.exp(arr[i])
arr[i] = ex/np.sum(ex)
return arr
def produce_cam(model_name, is_gradcam, is_gradcamplus, is_f_scorecam, is_scorecam, is_camerascam, is_guidedbp, input_files, enable_gpu):
#Check gpu availability
if enable_gpu:
gpus = len(tf.config.list_physical_devices('GPU'))
print('[INFO] Tensorflow recognized {} GPUs'.format(gpus))
else:
tf.config.set_visible_devices([], 'GPU')
cam_count = [is_scorecam, is_f_scorecam, is_gradcamplus, is_gradcam, is_camerascam, is_guidedbp].count(True)
#Load {index:classs_name} dictionary
index_class = index_class_dict()
#Load required model
all_models = init_models(MODEL_PATH, model_name)
model = all_models[model_name]['model']
model.layers[-1].activation = None
#Set preprocessing
preprocess_func = all_models[model_name]['preprocess_func']
image_size = all_models[model_name]['image_size']
activation_layer_index = -4
#Load and preprocess Images
input_images = []
for j in tqdm(range(len(input_files)),desc = "[INFO] Loading Images", ncols=80):
file_name = input_files[j]
image = load_img(file_name)
image_array = get_img_array(image, image_size, preprocess_func)
input_images.append(image_array)
#Get predictions
predictions = []
scores = []
for j in tqdm(range(len(input_files)),desc = "[INFO] Getting Predictions", ncols=80):
image_array = input_images[j]
image_array = np.expand_dims(image_array, axis=0)
preds = model.predict(image_array)
preds = softmax(preds)
pred_index = np.argmax(preds[0])
score = "{0:.3f}%".format(preds[0][pred_index]*100)
predictions.append(pred_index)
scores.append(score)
#Generate Cams
cam_images = {}
for j in tqdm(range(len(input_files)),desc = "[INFO] Generating Cams", ncols=80):
file_name = input_files[j]
image_array = input_images[j]
pred_index = predictions[j]
cam_images[file_name] = {}
#Grad-Cam
if is_gradcam:
cam_images[file_name]['gradcam'] = gen_cam(cam_type='gradcam', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
#Grad-Cam++
if is_gradcamplus:
cam_images[file_name]['gradcampp'] = gen_cam(cam_type='gradcampp', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
#FasterScore-Cam++
if is_f_scorecam:
cam_images[file_name]['f-scorecam'] = gen_cam(cam_type='f-scorecam', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
#Scorecam
if is_scorecam:
cam_images[file_name]['scorecam'] = gen_cam(cam_type='scorecam', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
#CAMERAS
if is_camerascam:
cam_images[file_name]['cameras'] = gen_cam(cam_type='cameras', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
if is_guidedbp:
cam_images[file_name]['guidedbp'] = gen_cam(cam_type='guidedbp', model=model, image_array=image_array, label_index=pred_index, activation_layer_index=activation_layer_index)
#Plot Cams
print("[INFO] Plotting Cams")
OUTPUT_PATH = 'out/Cams/'
i=0
rows, cols = (len(cam_images), cam_count + 1)
plt.figure(figsize=(12, 12))
for k in range(len(input_files)):
file_name = input_files[k]
actual_class = file_name.split('/')[-1].split('.')[0]
org_img = load_img(file_name)
org_img = get_img_array(org_img, image_size)
pred_index = predictions[k]
score = scores[k]
j = 1
#Plot Original Image
plt.subplot(rows, cols, i + j)
plt.title("Prediction: " + index_class[pred_index] +' ('+score+')', fontsize=FONT_SIZE)
plt.imshow(org_img/255.0)
plt.xticks([])
plt.yticks([])
j += 1
#Plot Superimposed heatmap on Original Image
if is_gradcam:
gradcam_super_img = get_superimposed_image(org_img, cam_images[file_name]['gradcam'])
plt.subplot(rows, cols, i + j)
plt.imshow(gradcam_super_img)
plt.xticks([])
plt.yticks([])
plt.title("Grad-CAM", fontsize=FONT_SIZE)
j += 1
if is_gradcamplus:
gradcampp_super_img = get_superimposed_image(org_img, cam_images[file_name]['gradcampp'])
plt.subplot(rows, cols, i + j)
plt.imshow(gradcampp_super_img)
plt.xticks([])
plt.yticks([])
plt.title("Grad-Cam++", fontsize=FONT_SIZE)
j += 1
if is_f_scorecam:
f_scorecam_super_img = get_superimposed_image(org_img, cam_images[file_name]['f-scorecam'])
plt.subplot(rows, cols, i + j)
plt.imshow(f_scorecam_super_img)
plt.xticks([])
plt.yticks([])
plt.title("Faster Score-Cam", fontsize=FONT_SIZE)
j += 1
if is_scorecam:
scorecam_super_img = get_superimposed_image(org_img, cam_images[file_name]['scorecam'])
plt.subplot(rows, cols, i + j)
plt.imshow(scorecam_super_img)
plt.xticks([])
plt.yticks([])
plt.title("Score-Cam", fontsize=FONT_SIZE)
j += 1
if is_camerascam:
cameras_super_img = get_superimposed_image(org_img, cam_images[file_name]['cameras'])
plt.subplot(rows, cols, i + j)
plt.imshow(cameras_super_img)
plt.xticks([])
plt.yticks([])
plt.title("Cameras-Cam", fontsize=FONT_SIZE)
j += 1
if is_guidedbp:
plt.subplot(rows, cols, i + j)
plt.imshow(cam_images[file_name]['guidedbp'])
plt.xticks([])
plt.yticks([])
plt.title("Guided-Bp", fontsize=FONT_SIZE)
j += 1
i += (cam_count + 1)
savefigure(OUTPUT_PATH, model_name + '-' + actual_class)
plt.show()
plt.close('all')
print("[INFO] Done.")
def evaluate_model(model_name, enable_gpu):
#Check gpu availability
if enable_gpu:
gpus = len(tf.config.list_physical_devices('GPU'))
print('[INFO] Tensorflow recognized {} GPUs'.format(gpus))
else:
tf.config.set_visible_devices([], 'GPU')
#Load required model
all_models = init_models(MODEL_PATH, model_name)
model = all_models[model_name]['model']
#compute cost
print("\n[INFO] Model Cost")
cost_compute(MODEL_PATH + model_name + '/' + model_name + '.h5')
#Set preprocessing
preprocess_func = all_models[model_name]['preprocess_func']
image_size = all_models[model_name]['image_size']
#Test on Validation data
print("\n[INFO] Model Validation ")
validation_generator = create_data_generator(data_path=VALIDATION_DATA_DIR,
input_shape=image_size,
batch_size=BATCH_SIZE,
pre_process=preprocess_func)
evaluate(model, validation_generator)
#Test on Test data
print("\n[INFO] Model Testing ")
test_generator = create_data_generator(data_path=TEST_DATA_DIR,
input_shape=image_size,
batch_size=BATCH_SIZE,
pre_process=preprocess_func)
evaluate(model, test_generator)