-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathrun_timitpred_fullCapacityURNN.sh
executable file
·70 lines (55 loc) · 3.1 KB
/
run_timitpred_fullCapacityURNN.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/bin/bash
gpuIdx=0
dataset="timit_trainNoSA_dev_coreTest"
prng_seed_Givens=51026
indir="TIMIT_8khz"
# for TIMIT, training set size is 4620 utterances
# factors of 4620: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 | 12 | 14 | 15 | 20 | 21 | 22 | 28 | 30 | 33 | 35 | 42 | 44 | 55 | 60 | 66 | 70 | 77 | 84 | 105 | 110 | 132 | 140 | 154 | 165 | 210 | 220 | 231 | 308 | 330 | 385 | 420 | 462 | 660 | 770 | 924 | 1155 | 1540 | 2310 | 4620 (48 divisors)
# for TIMIT, training set size without SA is 3640 utterances
# factors of 3640:
# 1,2,4,5,7,8,10,13,14,20,26,28,35,40,52,56,65,70,91,104,130,140,182,260
niter=13000 #number of training mini-batch iterations
nepochs=100 #number of increases in validation loss allowed (in units of epochs)
nbatch=28 #28 yields 130 iterations per epoch
nhidden=65
lr=0.001
lr_print="${lr/./-}"
model="complex_RNN"
datatype="complex"
cost="MSE"
fold="fold1"
scene="all"
flag_feed_forward=0
flag_generator=0
downsample_train=1
downsample_test=1
for num_pred_steps in 1; do
echo "npred=${npred}"
for nhidden in 128 192 256; do
#for seed in 1234 2345 3456; do
for seed in 1234; do
for flag_useFullW in 1; do
if (( flag_useFullW == 0 )); then
Wimpl="adhoc_fast"
else
Wimpl="full"
fi
savefile="exp/timit_prediction_trainNoSA-dev-coreTest_ae_niter${niter}_nbatch${nbatch}_nhidden${nhidden}_lr${lr_print}_${model}_${datatype}_${cost}_${fold}_${scene}_flagff${flag_feed_forward}_flaggen${flag_generator}_dstrain${downsample_train}_dstest${downsample_test}_${Wimpl}_prngSeed${prng_seed_Givens}_nAllowedInc${nepochs}_itsPerValid130_hbias0-0_logmag_npred${num_pred_steps}_seed${seed}"
echo "Running experiment, writing to savefile ${savefile}"
echo "==============="
cmd="THEANO_FLAGS='device=gpu${gpuIdx}' python2.7 -u timit_prediction.py ${niter} ${nbatch} ${nhidden} ${lr} ${savefile} ${model} ${datatype} True ${cost} ${fold} ${scene} --indir ${indir} --dataset ${dataset} --flag_feed_forward ${flag_feed_forward} --flag_generator ${flag_generator} --downsample_train ${downsample_train} --downsample_test ${downsample_test} --prng_seed_Givens ${prng_seed_Givens} --num_allowed_test_inc ${nepochs} --iters_per_validCheck 130 --flag_useFullW ${flag_useFullW} --num_pred_steps ${num_pred_steps} --hidden_bias_mean 0.0 --data_transform logmag --offset_eval 400 --n_utt_eval_spec 192 --seed ${seed}"
echo $cmd
SECONDS=0
eval $cmd
echo "Experiment took $SECONDS seconds."
echo ""
# score the results
echo "${savefile}_eval" > exp_list
cmd="matlab -nosplash -nodesktop -nodisplay -r \"addpath('matlab'); try score_timitpred('exp_list'); catch; end; quit\""
echo $cmd
echo "Scoring results of experiment..."
eval $cmd
done
done
done
done